Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

排序:
默认
按更新时间
按访问量

Python 爬虫笔记(1)

import urllib.request 访问网址,打开网页,方法: urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capath=None, cadefault=False, context=None) 其...

2017-03-29 23:41:47

阅读数:571

评论数:0

Python 画二维和三维散点同心圆

我们利用Python先画二维的散点圆:   我们的圆上的点,采取圆的参数方程来取。我们根据取theta的步长来决定圆上的散点的松散度。 import numpy as np import matplotlib.pyplot as plt r = 1.0 a, b = (0., 0.) th...

2017-03-29 23:13:03

阅读数:1707

评论数:0

开关电灯(济南联通面试题)

今天有个同学面试联通问了我一个面试题,貌似这个题当过很多面试题,不难,随手记录一下吧。 题目描述:     有N个灯放在一起,从1到N依次顺序编号,有N个人也从1到N依次编号。1号将灯全部熄灭,2号将,凡是2的倍数的灯打开;3号将凡是3的倍数的灯作相反处理(该灯如为打开,则将他关闭;如果关闭,...

2017-03-16 22:48:27

阅读数:201

评论数:0

支持向量机(SVM)(四)----SMO

我们前几节说了线性可分,以及在低维线性不可分,但是在高维是线性可分的。还有一种情况,如下图:     这种因奇异点而造成的划分平面不合理的移动,不是我们所想的,或者因为个别奇异点导致线性不可分,其余的大部分的点都是线性可分的,如果因此 就映射到高维来解决,那么也不值当,如下的情况:    ...

2017-03-07 01:07:02

阅读数:591

评论数:0

支持向量机(SVM)(三)----核函数及正则化

上一节最后我们说到我们根据求得的,可求得,,然后求出决策函数,但是我们知道: 是的函数,我们也许不必把带入上式来求解,我们直接把上式带入决策函数可有:     假如我们已经求得最优的,在作出预测的时候,我们可以只进行输入数据x与训练样本的内积即可。在转化为对偶条件的时候,我们知道要满...

2017-03-07 01:06:16

阅读数:1794

评论数:0

支持向量机(SVM)(二)----对偶

==============================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     上小节,我们...

2017-03-07 01:04:28

阅读数:394

评论数:0

支持向量机(SVM)(一)----介绍SVM

=========================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     支持向量机(Support...

2017-03-07 01:01:23

阅读数:570

评论数:0

KNN算法及其实现

K-邻近算法(k-NearestNeighbor,KNN),存在某一样本集,已经知道样本和对应的类别,当输入一个没有类别标识的数据时,找出与其“最相似”的K个样本,在这k个样本中,哪个类别的样本个数最多,我们就把该未知数据的类别归为此类。其中的相似性,可以利用距离来度量,而衡量距离的方法,可以是欧...

2017-03-04 22:55:20

阅读数:891

评论数:0

python sort、sorted高级排序技巧

这篇文章主要介绍了python sort、sorted高级排序技巧,本文讲解了基础排序、升序和降序、排序的稳定性和复杂排序、cmp函数排序法等内容,需要的朋友可以参考下 Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对...

2017-03-04 22:42:23

阅读数:382

评论数:0

主成分分析(PCA)

当我们研究某个问题的时候,该问题有很多个变量,而且某些变量与变量之间存在一定的相关关系,如果两个变量存在相关关系,那么这两个变量之间存在着重叠信息,而这就造成了数据的冗余。比如一群学生,Boy和Girl,他们的性别我们可以用二维数组来表示,对于某个学生,Boy 可表示成:[1][0],Girl可表...

2017-03-03 22:55:52

阅读数:314

评论数:0

反向传播算法(BackPropagation,BP)

本文参考《神经网络和深度学习》,旨在说明BP算法是怎样的一个过程。在一个多层的神经网络中,反向传播算法就是不断的学习这个网络的权值和偏值,采用梯度下降法使得该神经网络的输出值与真实的目标值之间的误差最小。   1,那么为什么更新权值和偏值可以使得代价函数最小化呢?   2,以及如何更新权值和偏值呢...

2017-02-20 11:45:00

阅读数:1868

评论数:0

什么是P问题、NP问题和NPC问题

这或许是众多OIer最大的误区之一。   你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题并不是那种“只有搜才行”的问题,NPC问题...

2017-01-10 20:42:33

阅读数:327

评论数:0

动态规划之详细分析0-1背包问题

题目:   有 N 件物品和一个容量为 V 的背包。第 i 件物品的费用是 w[i],价值是 p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。   本文按照动态规划的标准模式解析:http://blog.csdn.net/hearthougan/article...

2016-12-26 01:50:32

阅读数:11732

评论数:7

动态规划总结

动态规划(Dynamic Programming, DP)思想启发于分治算法的思想,也是将复杂问题化解若干子问题,先求解小问题,再根据小问题的解得到原问题的解。但是DP与分治算法不同的是,DP分解的若干子问题,往往是互相不独立的,这时如果用分治算法求解,那么会对重叠子问题重复进行求解,从而使得浪费...

2016-12-20 04:00:18

阅读数:3742

评论数:0

Logistic Regression-逻辑回归

logistic回归分类的主要思想:根据现有的数据对分类边界线建立回归公式,以此分类,这里“回归”源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时就是寻找最佳拟合参数。   Sigmoid函数:   Sigmoid函数的输入记为z,且,向量W就是我们要寻找的参数,向量X是分类器的输入数据。 ...

2016-11-06 21:10:55

阅读数:770

评论数:3

最大似然估计

首先看两个例子:   例1:天上有乌云,问那么下雨的概率是多少?这是一个条件概率,也称为后验概率;如果现在正在下雨,那么天上有乌云的概率是多少?这就是似然,由结果去找原因。   例2:有两个人去打一只正在吃草的鹿,一个是猎手,另一个是菜鸟,砰一声,鹿死了,那么谁最有可能打死这只鹿?这就是最大似...

2016-11-06 12:10:18

阅读数:653

评论数:0

ID3decision tree-ID3决策树实现

创建简单的数据集: 根据下图创建数据集:   图表的意思是:表中5个海洋动物,特征包括两个:1、不浮出水面是否可以生存,2、是否有脚蹼。我们可以将这些动物分成两类: 鱼类和非鱼类。 #create data set and lebels def CreateDataset(): da...

2016-11-03 14:12:14

阅读数:819

评论数:0

K-Means聚类算法原理及实现

由于个人理解有限,难免有错误之处,欢迎指正。 k-means 聚类算法原理:     1、从包含多个数据点的数据集 D 中随机取 k 个点,作为 k 个簇的各自的中心。     2、分别计算剩下的点到 k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇。两个点之间的相异度大小采用欧氏距离公式...

2016-10-26 11:54:49

阅读数:4698

评论数:0

Python基础语法笔记--xrange()与range()的区别、map、filter、reduce分析、lambda表达式

xrange与range的区别     在for循环中使用xrange与range函数,利用help函数,查的他们的用法如下: range: range(...) range(stop) -> list of integers range(start, stop[, step...

2016-10-13 12:44:13

阅读数:793

评论数:0

Google 开源项目风格指南--C++ 风格指南

文档转自:http://zh-google-styleguide.readthedocs.io/en/latest/google-cpp-styleguide/naming/ 6. 命名约定 最重要的一致性规则是命名管理. 命名风格快速获知名字代表是什么东东: 类型? 变量? 函数? 常量?...

2016-09-13 15:25:19

阅读数:448

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭