Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

zoj 1508 Intervals

#include #include #include #include using namespace std; const int INF = 10000000; const int MAXN = 50010; struct ArcNode { int to; int weig...

2013-12-31 23:58:42

阅读数:454

评论数:0

zoj 2770 Burn the Linked Camp

Bellman_Ford实现:点击打开http://blog.csdn.net/hearthougan/article/details/17631941 差分约束系统的SPFA实现:SPFA速度比Bellman_Ford快多了。链表实现,表头不存数据。 #include #include ...

2013-12-30 20:48:02

阅读数:678

评论数:0

zoj 2770

#include #include #include using namespace std; const int MAXN = 1010; const int MAXM = 23000; const int INF = 100000000; struct Edge { int...

2013-12-28 14:38:09

阅读数:710

评论数:0

poj 1201

#include #include #include using namespace std; const int MAXN = 50010; const int INF = 100000000; struct Edge { int u, v, w; }edges[MAXN];...

2013-12-28 14:36:16

阅读数:524

评论数:0

Floyd Test

算法思想:       Floyd(弗洛伊德)算法的基本思想是:对一个顶点个数为n的有向网(或无向网),设置一个n×n的方阵A(k) ,其中除对角线的矩阵元素都等于0外,其他元素A(k)  [i][j] (i≠j)表示从顶点vi到顶点vj的有向路径长度,k表示运算步骤,k = -1, 0,...

2013-12-26 21:50:19

阅读数:509

评论数:0

poj 3259 Wormholes

http://poj.org/problem?id=3259 判断是否存在负权回路,如果存在,则表明某个顶点i入队列的次数超过了n次,n是顶点的数目。 #include #include #include #include #include using namespace std;...

2013-12-25 18:01:49

阅读数:480

评论数:0

poj 3268

点击打开题目 #include #include #include #include using namespace std; const int INF = 10000000; const int MAXN = 1010; struct ArcNode//邻接表结构 { ...

2013-12-25 15:02:04

阅读数:555

评论数:0

SPFA

算法思想:    Bellman-Ford算法的时间复杂度比较高,为O(n3)或O(nm),原因在于Bellman-Ford算法要递推n次,每次递推,扫描所有的边,在递推n次的过程中很多判断是多余的。SPFA算法(Shortest Path Faster Algorithm)是Bellman-F...

2013-12-25 14:54:22

阅读数:548

评论数:0

poj 1556 The Doors

#include #include #include #include #include using namespace std; const int INF = 100000000; const int MAXN = 100; struct Point { double ...

2013-12-22 14:59:39

阅读数:581

评论数:0

poj 2240 zoj1092 Arbitrage

#include #include #include using namespace std; const int MAXN = 35; const int MAXM = 1000; struct exchange { int ci, cj; double cij; }...

2013-12-21 19:27:00

阅读数:500

评论数:0

hdu 3579 Hello Kiki

题目:点击打开题目 #include #include #include using namespace std; typedef long long LL; const int MAXN = 10; LL Gcd(LL a, LL b) { return b == 0 ? ...

2013-12-20 14:35:37

阅读数:555

评论数:0

hdu 1573 X问题

#include #include #include using namespace std; const int MAXN = 15; typedef long long LL; LL Gcd(LL a, LL b) { if(b == 0) return a...

2013-12-20 12:09:21

阅读数:573

评论数:0

poj 2115 C Looooops

#include #include #include using namespace std; typedef long long LL; void Ex_Gcd(LL a, LL b, LL &d, LL &x, LL &y) { if(b == 0)...

2013-12-18 21:22:20

阅读数:503

评论数:0

poj 2891 Strange Way to Express Integers

#include #include #include using namespace std; void Ex_Gcd(long long a, long long b, long long &d, long long &x, long long &y) { ...

2013-12-12 21:15:03

阅读数:505

评论数:0

同余问题怎么求解最小正整数解

定理一:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。 证明:     存在性:存在整数k和l使a*k + b*l = gcd(a, b) = 1,即我们可以求出ax ≡ 1 (mod b)的解x0。当然,两边乘以c有a(cx0) ≡ c (mod ...

2013-12-12 19:23:46

阅读数:829

评论数:0

nefu 84

#include using namespace std; long long Extended_Gcd(long long a, long long b, long long &x, long long &y) { if(b == 0) { ...

2013-12-10 17:58:46

阅读数:439

评论数:0

hdu 2035 人见人爱A^B

设:a%m = r1, b %  m = r2, 则:(a*b) % m = (a%m)*(b%m)%m; 令: a = k1 *m + r1, b = k2 * m + r2; 则:a*b = ( k1*m+r1 ) * (k2*m + r2) = (k1*k2*m^2 + k1*m*r2 ...

2013-12-10 13:52:51

阅读数:1089

评论数:0

hdu 1021 Fibonacci Again

设a%m = r1, b%m = r2,则:(a+b)%m = (r1 + r2)%m = (a%m + b%m)%m; 令:a = k1 * m + r1; b = k2 * m + r2; 则:(a+b)%m = (k1*m + r1 + k2 * m + r2)%m = ((k1 + k...

2013-12-10 13:33:09

阅读数:533

评论数:0

poj 2769

同余问题: #include #include #include using namespace std; const int MAXN = 310; int main() { bool p[100010]; int arr[MAXN]; int T; ...

2013-12-10 13:04:49

阅读数:517

评论数:0

hdu 2534 Score

我们知道Gcd(a, b) = a*x + b*y;其中x, y 为正整数,如果当Gcd(a, b) = 1 时,a与b互素。根据这个,可以解这一题目 a*x+b*y为a和b所能组成的数,x, y非负整数。设K为a,b所不能组成的最大数,而m和n为大于K的两个连续数,且m > n;x1,y...

2013-12-09 19:35:38

阅读数:676

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭