Anylogic设置颜色 以detector智能体为例,颜色修改代码为:detector.setColor(“Material_(4)_Surf”,blue);house智能体为例,对组件内的_ps282填充的颜色进行修改,level_是该智能体已有的参数或者称之为变量。
抖音斑马观察室-1-24.3.9 领导上车时,帮领导提包,眼看领导上车时,快步将包给领导放于座位,给领导打开车门,关门,挥手目送离开。在下大巴车、考斯特时,如果领导对对方来人不太熟悉,则需要先下车,准备给领导介绍,走时要先上车往后走,领导一般做前排,方便挥手送别,送别领导时,站着挥手等车开走之后再往回走。领导和秘书双人出行,领导坐轿车后排,帮领导开门,要注意秘书,帮人轻微关个门。在向领导介绍时,进门要和领导打招呼,比如XX,您好,我是XX部门,张三,简单介绍即可。
word中避免无引用源的方法 按下快捷键 ctrl+f11即可锁定域 ,右键点击目录可以看到“更新域”的选项是灰色不能点击的(如图2)。此时导出PDF或打印时,目录就不会自定更新了,从而实现我们所需的效果。需要注意的是 :锁定域之后,word中的所有域都不能更新,包括目录、参考文献、日期等,如需更新需先解除域锁定。4 解锁域 按下快捷键ctrl+shift+f11即可解除域的锁定,可以再次更新目录。
职场闲唠-国家传授的经验 文章目录1 职场转型职场菜鸟如何“过五关获六智”职场的酸甜苦辣职业规划难以制定成功的12种心态出色的学习能力 才是你唯一可持续的竞争优势给职场新手的五点建议要做好一个事情,干好一份工作,不但要知其然,还要知其所以然。戒掉情绪,你就成功了一半。1 职场转型要想解决往哪里转的问题,先来看看决定转型成功的7个要素:(1)职业倾向性:尽量转向你喜欢的职业或适合的职业;(2)人脉:尽量转向能够充分运用现有人脉的职业;(3)企业背景:尽量跳往背景相似的企业;(4)成长背景:尽量转向在你职业发展中烙下“印记”
【无标题】 (2)PLM(产品生命周期管理系统):它负责产品设计的图文档、设计过程、设计变更、工程配置的管理,为ERP系统提供最主要的数据源BOM表,同时为MES系统提供最主要的数据源工艺路线文件。(3)MES(制造执行系统):它负责车间中生产过程的数字化管理, 实现信息与设备的深度融合,为ERP系统提供完整、及时、准确的生产执行数据 ,是智能工厂的基础。(1)ERP (企业资源计划系统):它是企业信息化的核心系统,管理销售、生产、采购、仓库、质量、成本核算等.(3)在制品(workinprocess,WIP)数量。
法学领域的技术创新点 2022年的新任务。词级别分类,有点像序列标注,但不需要在所有词上面做预测。一共108种事件类型。训练集、验证集1来自于论文 LEVEN(ACL 2022 Findings), 包含8000+份文书,60000+个句子。验证集2和最终测试集将以混淆数据的形式向选手开放。作者:Erutan Lai链接:https://zhuanlan.zhihu.com/p/550558067来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
AAAI论文阅读 报告句子含糊不清的原因是:(1)医学术语的含义与日常一般用法不同,如unsmarkable;最近的一项研究表明,经过大规模预训练的 LM 在复杂语境(如对话)下仍难以进行这种时间推理,因为它们只能隐式地编码相关语境,而不能显式地揭示复杂推理的基本逻辑组合。我们采用多角度训练方法,为文本简化添加了两种可控性:位置感知(使用原位注释输入和输出)和位置无关(模型只知道要编辑的内容,但不知道它们的位置)。然后,通过扰动模型的隐藏状态,使用该模型改写模棱两可的输入,并将生成的结果推向对其考试结果更加明确的方向。
条件语义相似度-CSTS 不同方面去做相似度的评价,语料库的收集上是有一定技巧的,并不是完全从头开始。损失函数构造上的思路,不是很理解,为什么没有设置为多任务形式而是将两个(high&low)的损失值放在一个损失函数里。相似度也是评价角度之一,涉及到评价的,应该将结果单一值转向结果云的形式,其中论文中的条件,就是结果呈现的不同角度。
指标体系构建与验证 在指标验证上,多是以数值型数据为主,比如通过问卷调研中的量度测评得到指标重要程度,在做因子或者信度或者关联性分析等等。AHP层次分析法中的指标有效性验证软件:Yaahp6. 0 软件。
ACL论文-系列2 将sentence中entity mention做mask,然后将entity type 填充在每个relation的template中,用于relation classification。这个对比损失函数中,是把同一个entity pair,但不同mask rate下的entity pair作为positive pairs。每个token作为一个pixel,然后物体检测,在这个grid中,找到object的上下左右四个角。,给出两个实体,判断实体之间的关系类型。实体有左右边界,left和right。
对比学习论文-系列4 为了提高答案预测的准确性,我们对语义相似和混乱的负面跨度文本进行采样(④),并通过对比学习来训练模型(⑤)。让R作为训练历时的数量,为了在第k个历时训练模型,我们首先生成一个长度为L的等差数列,其中a1=1-k/R,aL=k/R。( learning-order denoising)来改善预训练期间学到的关系表征,方法是将每个关系实例的权重与该实例的学习顺序进行线性投影。计算得到每个class的元表示后,作为一个example,用于计算batch中的真实example和这个类型的元表示之间的距离。
论文复现-4:ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer 代码源文件:EmbeddingSimilarityEvaluator.py。