剑指 Offer 59 - II. 队列的最大值

题目描述

请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。

若队列为空,pop_front 和 max_value 需要返回 -1
示例 1:
输入:
[“MaxQueue”,“push_back”,“push_back”,“max_value”,“pop_front”,“max_value”]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]

示例 2:
输入:
[“MaxQueue”,“pop_front”,“max_value”]
[[],[],[]]
输出: [null,-1,-1]

题解

题解转载自Leetcode官方
方法:维护一个单调的双端队列

本算法基于问题的一个重要性质:当一个元素进入队列的时候,它前面所有比它小的元素就不会再对答案产生影响。

举个例子,如果我们向队列中插入数字序列 1 1 1 1 2,那么在第一个数字 2 被插入后,数字 2 前面的所有数字 1 将不会对结果产生影响。因为按照队列的取出顺序,数字 2 只能在所有的数字 1 被取出之后才能被取出,因此如果数字 1 如果在队列中,那么数字 2 必然也在队列中,使得数字 1 对结果没有影响。

按照上面的思路,我们可以设计这样的方法:从队列尾部插入元素时,我们可以提前取出队列中所有比这个元素小的元素,使得队列中只保留对结果有影响的数字。这样的方法等价于要求维持队列单调递减,即要保证每个元素的前面都没有比它小的元素。

那么如何高效实现一个始终递减的队列呢?我们只需要在插入每一个元素 value 时,从队列尾部依次取出比当前元素 value 小的元素,直到遇到一个比当前元素大的元素 value即可。

上面的过程保证了只要在元素 value 被插入之前队列递减,那么在 value 被插入之后队列依然递减。
而队列的初始状态(空队列)符合单调递减的定义。
由数学归纳法可知队列将会始终保持单调递减。
上面的过程需要从队列尾部取出元素,因此需要使用双端队列来实现。另外我们也需要一个辅助队列来记录所有被插入的值,以确定 pop_front 函数的返回值。

保证了队列单调递减后,求最大值时只需要直接取双端队列中的第一项即可。

class MaxQueue {
    
    //队列q用于获取pop()的返回值
    Queue<Integer> q;
    //双端队列尾d部进(push),尾部出(pollLast,用于移除比待push的value小的值),头部出(max_value)
    Deque<Integer> d;

    public MaxQueue() {
        q= new LinkedList<Integer>();
        d= new LinkedList<Integer>();
    }
    
    public int max_value() {
        if(d.isEmpty()){
            return -1;
        }
        //因为双端队列是一个递减序列,所以只需要获取队列的头结点即可获得队列最大值
        return d.peekFirst();
    }
    
    public void push_back(int value) {
        //把双端队列d中所有比value小的值从尾部出队,以构成一个递减序列
        while(!d.isEmpty()&&d.peekLast()<value){
            d.pollLast();
        }
        //把value存入p和d中
        d.offerLast(value);
        q.offer(value);
    }
    
    public int pop_front() {
        if(q.isEmpty()){
            return -1;
        }
        int ans = q.poll();
        if(ans==d.peekFirst()){
            d.pollFirst();
        }
        return ans;
    }
}

/**
 * Your MaxQueue object will be instantiated and called as such:
 * MaxQueue obj = new MaxQueue();
 * int param_1 = obj.max_value();
 * obj.push_back(value);
 * int param_3 = obj.pop_front();
 */
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页