题目描述
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。
说明:不允许修改给定的链表。
进阶:
你是否可以使用 O(1) 空间解决此题?
题解
题解转载自Krahets
算法流程:(双指针法)
双指针第一次相遇: 设两指针 fast,slow 指向链表头部 head,fast 每轮走 22 步,slow 每轮走 11 步;
第一种结果: fast 指针走过链表末端,说明链表无环,直接返回 null;
TIPS: 若有环,两指针一定会相遇。因为每走 11 轮,fast 与 slow 的间距 +1+1,fast 终会追上 slow;
第二种结果: 当fast == slow时, 两指针在环中 第一次相遇 。下面分析此时fast 与 slow走过的 步数关系 :
设链表共有 a+b个节点,其中 链表头部到链表入口 有 a个节点(不计链表入口节点), 链表环 有 b 个节点;设两指针分别走了 f,s步,则有:
- fast 走的步数是slow步数的 2 倍,即 f = 2s;
- fast 比 slow多走了 n个环的长度,即 f = s + nb;( 解析: 双指针都走过 a步,然后在环内绕圈直到重合,重合时 fast 比 slow 多走 环的长度整数倍 );
以上两式相减得 :f = 2nb,s = nb,即fast和slow 指针分别走了 2n,n个 环的周长 (注意: n是未知数,不同链表的情况不同)。
目前情况分析:
如果让指针从链表头部一直向前走并统计步数k,那么所有 走到链表入口节点时的步数 是:k=a+nb(先走 a 步到入口节点,之后每绕 1 圈环( b步)都会再次到入口节点)。
而目前,slow 指针走过的步数为 nb步。因此,我们只要想办法让 slow 再走 a步停下来,就可以到环的入口。
但是我们不知道 a的值,该怎么办?依然是使用双指针法。我们构建一个指针,此指针需要有以下性质:此指针和slow 一起向前走 a 步后,两者在入口节点重合。那么从哪里走到入口节点需要 a 步?答案是链表头部head。
双指针第二次相遇:
- slow指针 位置不变 ,将fast指针重新 指向链表头部节点 ;slow和fast同时每轮向前走 11 步;TIPS:此时 f = 0,s = nb;
- 当 fast 指针走到f = a步时,slow 指针走到步s = a+nb,此时 两指针重合,并同时指向链表环入口 。
- 返回slow指针指向的节点。
复杂度分析:
解释:为何慢指针第一圈走不完一定会和快指针相遇: 首先,第一步,快指针先进入环 第二步:当慢指针刚到达环的入口时,快指针此时在环中的某个位置(也可能此时相遇) 第三步:设此时快指针和慢指针距离为x,若在第二步相遇,则x = 0; 第四步:设环的周长为n,那么看成快指针追赶慢指针,需要追赶n-x; 第五步:快指针每次都追赶慢指针1个单位,设慢指针速度1/s,快指针2/s,那么追赶需要(n-x)s 第六步:在n-x秒内,慢指针走了n-x单位,因为x>=0,则慢指针走的路程小于等于n,即走不完一圈就和快指针相遇
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
//假设链表头到环入口为a步,环的长度为b
//假设有环,那么慢指针走一步快指针走两步,二者必定会相遇
//假设快慢指针相遇时快指针走了f步,慢指针走了s步
//相遇时f=2s
//又因为相遇时f必定比s多走了n个环的距离,f=s+nb
//由此可知s=nb f=2nb
//因为一个指针想要走到环的入口必定要走 a+kb步
//所以此时慢指针只需要再走a步就可以走到入口节点
//a怎么确定?(链表头到环入口的距离)慢指针不动继续走,快指针移动到链表头从头走
//二者相遇时就是环的入口节点
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode fast=head,slow=head;
while(true){
//判断fast.next是否为Null是为了判断是否只有一个节点(无环),或者确保fast=fast.next.next可以执行
if(fast==null||fast.next==null) return null;
slow=slow.next;
fast=fast.next.next;
//两者相遇,说明有环
if(slow==fast) break;
}
fast=head;
while(fast!=slow){
fast=fast.next;
slow=slow.next;
}
return fast;
}
}