给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。
题解
题解转载自Krahets
思路:
生成一个 n×n 空矩阵 mat,随后模拟整个向内环绕的填入过程:
定义当前左右上下边界 l,r,t,b,初始值 num = 1,迭代终止值 tar = n * n;
当 num <= tar 时,始终按照 从左到右 从上到下 从右到左 从下到上 填入顺序循环,每次填入后:
执行 num += 1:得到下一个需要填入的数字;
更新边界:例如从左到右填完后,上边界 t += 1,相当于上边界向内缩 1。
使用num <= tar而不是l < r || t < b作为迭代条件,是为了解决当n为奇数时,矩阵中心数字无法在迭代过程中被填充的问题。
最终返回 mat 即可。
//设立左边界,右边界,上边界,下边界
//四个循环
class Solution {
public int[][] generateMatrix(int n) {
//上下左右边界
int t=0,b=n-1,l=0,r=n-1;
int num=1;
int[][] mat = new int[n][n];
//只要没有填满,就一直上下左右循环
while(num<=n*n){
//从左到右
//行下标是最上面空白行的值(t)
//列下标是最左边到最右边空白行的值(l-r)
//遍历完成后行下标++
for(int i=l;i<=r;i++){
mat[t][i]=num++;
}
t++;
//从上到下
for(int i=t;i<=b;i++){
mat[i][r]=num++;
}
r--;
//从右到左
//这块就是i--
for(int i=r;i>=l;i--){
mat[b][i]=num++;
}
//b--
b--;
//从下到上
for(int i=b;i>=t;i--){
mat[i][l]=num++;
}
l++;
}
return mat;
}
}