省钱构建回文串

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag’s contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is “abcba” would read the same no matter which direction the she walks, a cow with the ID “abcb” can potentially register as two different IDs (“abcb” and “bcba”).

FJ would like to change the cows’s ID tags so they read the same no matter which direction the cow walks by. For example, “abcb” can be changed by adding “a” at the end to form “abcba” so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters “bcb” to the begining to yield the ID “bcbabcb” or removing the letter “a” to yield the ID “bcb”. One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow’s ID tag and the cost of inserting or deleting each of the alphabet’s characters, find the minimum cost to change the ID tag so it satisfies FJ’s requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input
Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3…N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.
Output
Line 1: A single line with a single integer that is the minimum cost to change the given name tag.
Sample Input
3 4
abcb
a 1000 1100
b 350 700
c 200 800

题意:
给出一个字符串s,通过增加或者删除字母使得字符串s成为一个回文串
输入中会给出每个字母增加或者减少的费用
然后求出最少费用使得字符串成为一个回文串
注意:空串也是一个回文串

思路:
先理解选择问题:
{
1.对于每个字母,根据费用选择添还是删
比如:abcb
第一步:a!=b,两种选择abcba和bcb,因此只需考虑是添a还是删a
根据输入自然选择添a,dp[2][3]=1000;

确定好字母是添还是删,假定我们选a为添,b也为添 

2.下面面临下一种选择
比如:abcb
a!=b,两种选择abcba和babcb,这两种都可是第一个和最后一个相等的,取最小

}

dp[i][j]表示字符串a从i到j构成回文串的最小费用

dp[i][j]=min(dp[i+1][j]+s[(int)a[i]],dp[i][j-1]+s[(int)a[j]]);
利用该状态转移方程可求字符串a从i到j构成回文串的最小费用、
具体过程不是很明白,多模拟模拟几遍
比如吧:求dp[1][3]=min(dp[2][3]+s[1],dp[1][2]+s[3]);
唉,就理解这么多吧

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char a[2020];
int dp[2020][2020];//dp[i][j]表示字符串a从i到j构成回文串的最小费用 
int s[128];
int main()
{
	int m,n;
	while(~scanf("%d %d",&m,&n))
	{
		int i,j,s1,s2;
		char x;
		memset(dp,0,sizeof(dp));
		scanf("%s",a);
		for(i=0;i<m;i++)
		{
			getchar();
			scanf("%c %d %d",&x,&s1,&s2);
			s[(int)x]=min(s1,s2);
		}
		for(i=n-2;i>=0;i--)
		{
			for(j=i+1;j<n;j++)
			{//例如bc,我们要考虑的是变为cbc还是bcb         
				dp[i][j]=min(dp[i+1][j]+s[(int)a[i]],dp[i][j-1]+s[(int)a[j]]);
				if(a[i]==a[j])//当相等情况发生时,说明上面+s[]便是多加的费用,可能需要改变dp[i][j]的值 
					dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
			}
		}
		printf("%d\n",dp[0][n-1]);
	}
}
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页