第六章(一)逻辑回归

6.1逻辑斯谛回归模型

6.1.1逻辑斯谛分布
  定义6.1逻辑斯谛分布:设X是连续随机变量,X服从逻辑斯谛分布是指X具有下列分布函数和密度函数: F(x)=P(Xx)=11+e(xμ)/γ
f(x)=e(xμ)/γγ(1+e(xμ)/γ)2
式中, μ 为位置参数, γ>0 为形状参数。
  分布函数属于逻辑斯谛函数,其图形是一条S形曲线。该曲线以点( μ ,0.5)为中心对称,即满足 F(x+μ)12=F(x+μ)+12 。曲线在中心附近增长速度较快,在两端增长速度较慢。形状参数 μ 的值越小,曲线在中心附近增长得越快。
这里写图片描述

6.1.2二项逻辑斯谛回归模型
  二项逻辑斯谛回归模型是一种分类模型,由条件概率分布P(Y|X)表示,形式为参数化的逻辑斯谛分布。这里,随机变量X取值为实数,随机变量Y取值为1或0。通过监督学习的方法来估计模型参数。
  定义6.2(逻辑斯谛回归模型)二项逻辑斯谛回归模型是如下的条件概率分布:
P(Y=1|x)=ewx+b1+ewx+b
P(Y=0|x)=11+ewx+b

6.1.3模型参数估计
  逻辑斯谛回归模型学习时,对于给定的训练数据集,可以应用极大似然估计法估计模型参数,从而得到逻辑斯谛回归模型。
设: P(Y=1|x)=π(x),P(Y=0|x)=1π(x)
则似然函数为 Ni=1[π(xi)]yi[1π(xi)]1yi
对数似然函数为
L(w)=i=1N[yilogπ(xi)+(1yi)log(1π(xi))] =i=1N[yilogπ(xi)1π(xi)+log(1π(xi))] =i=1N[yi(wxi)log(1+ewxi+b)]

对L(w)求极大值,得到w的估计值。这样,问题就变成以对数似然函数为目标函数得最优化问题。逻辑斯谛回归学习中通常采用的方法是梯度下降法和拟牛顿法

假设w的极大似然估计值为 w ,那么学到的逻辑斯谛回归模型为
P(Y=1|x)=ewx+b1+ewx+b
P(Y=0|x)=11+ewx+b

6.1.4多项逻辑斯谛回归
  上面介绍的逻辑斯谛回归模型是二项分类模型,用于二类分类。可以将其推广为多项逻辑斯谛回归模型,用于多类分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值