Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks
Abstract
我们开发了一种算法,该算法在通过单导联可穿戴显示器记录的心电图检测各种心律失常方面的表现超过了心脏病专家的表现。我们构建了一个数据集,其独特患者的数量是以前研究的语料库的 500 多倍。 在这个数据集上,我们训练了一个 34 层的卷积神经网络,它将一系列 ECG 样本映射到一系列节拍类。心脏病专家委员会对目标标准测试集进行了注释,我们在该测试集上将我们的模型的表现与其他 6 位心脏病专家的表现进行了比较。 我们在召回率(灵敏度)和精度(阳性预测值)方面都超过了心脏病专家的平均表现。
Introduction
我们开发了一种模型,该模型可以比心脏病专家更好地从单导联心电图信号中诊断出不规则的心律,也称为心律失常。 超越专家表现的关键是一个深度卷积网络,它可以将一系列 ECG 样本映射到一系列心律失常注释以及一个比以前同类数据集大两个数量级的新数据集。
我们训练了一个 34 层卷积神经网络 (CNN) 来检测任意长度 ECG 时间序列中的心律失常。图 1 显示了模型输入的示例。

图 1. 我们训练的卷积神经网络通过单导联可穿戴式心脏监护仪记录的心电图正确检测窦性心律 (SINUS) 和心房颤动 (AFIB)。
除了对噪声和窦性心律进行分类外,网络还学习对时间序列中存在的十二种心律失常类型进行分类和分割。该模型在以 200Hz 采样的单导联心电图信号上进行端到端训练,并针对心电图的每一秒进行一系列注释作为监督。 为了使这种深度模型的优化易于处理,我们使用了残差连接和批量标准化。深度增加了计算的非线性以及每个分类决策的上下文窗口的大小。
Model
Problem Formulation
ECG 心律失常检测任务是一个序列到序列的任务,它以 ECG 信号 X = [ x 1 , . . . , x k ] X=[x_1,...,x_k] X=[x

最低0.47元/天 解锁文章
2796

被折叠的 条评论
为什么被折叠?



