PY_06_01

前言

PY_06_01
抄就行了👻

一、代码步骤

抄就行了👻

lst=['甲','乙','丙','丁']
for x in lst:
    if (x!='甲')+(x=='丙')+(x=='丁')+(x!='丁')==3:
        print('真正的罪犯是{}。'.format(x))
        break

总结

最好运行一下
需要其他的代码点击这里Python程序设计——实验与实践

C:\Users\m8486\miniconda3\envs\yolov8\python.exe E:\Py_Project\yolov8\scallop\yolov8-42\42_demo\start_train.py C:\Users\m8486\miniconda3\envs\yolov8\lib\site-packages\numpy\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs: C:\Users\m8486\miniconda3\envs\yolov8\lib\site-packages\numpy\.libs\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll C:\Users\m8486\miniconda3\envs\yolov8\lib\site-packages\numpy\.libs\libopenblas64__v0.3.21-gcc_10_3_0.dll warnings.warn("loaded more than 1 DLL from .libs:" New https://pypi.org/project/ultralytics/8.3.180 available 😃 Update with 'pip install -U ultralytics' Ultralytics YOLOv8.2.77 🚀 Python-3.8.20 torch-1.10.0 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training. engine\trainer: task=pose, mode=train, model=yolov8n-pose.pt, data=E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\cfg\datasets\A_my_data.yaml, epochs=15, time=None, patience=100, batch=4, imgsz=640, save=True, save_period=-1, cache=True, device=[], workers=0, project=None, name=train6, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=False, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\pose\train6 Overriding model.yaml kpt_shape=[17, 3] with kpt_shape=[2, 2] from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 823327 ultralytics.nn.modules.head.Pose [1, [2, 2], [64, 128, 256]] YOLOv8n-pose summary: 250 layers, 3,082,863 parameters, 3,082,847 gradients, 8.4 GFLOPs Transferred 361/397 items from pretrained weights Freezing layer 'model.22.dfl.conv.weight' train: Scanning E:\Py_Project\yolov8\scallop\data\labels\train... 20 images, 0 backgrounds, 20 corrupt: 100%|██████████| 20/20 [00:00<00:00, 1019.53it/s] train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\0e2442a7d933c895b5ead5eedf1373f08302008a_png.rf.3e06a92705de0b557b6c082785872ae4.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\10_jpg.rf.ec518228505aac2d3b117bd7c4cedaf5.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\11_jpg.rf.ab8470625fa5f8c64b4f0da62d569bfe.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\13_jpg.rf.f0ad0bfb7bd2c8aa6f1090ff56c0b664.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\15_png.rf.e672b7b860c8b2bde57fb222640482c5.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\16_png.rf.0effb6e0967e98536b99238550b922e9.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\17_png.rf.7d55331b80aff86048c2432aeff76505.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\19_png.rf.8f54cc147c57df32181487d68764747e.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\1_jpg.rf.2b20401d520cd1aeb1723127c29c5b31.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\20_jpg.rf.fd4304a27c3ce5d165a0b9c9fa6e63a5.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\21_jpg.rf.54f2b690f0d01cc624a721bbd22f5f59.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\22_jpg.rf.b647040d7c26836325285ba906d32a6c.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\24_jpg.rf.b26b0be0d4060264af0533adc12c20ad.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\2_jpg.rf.260dab0951824e92c55569a0ca076fe8.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\3_jpg.rf.34d03378b8f590233a13a3d096839b6c.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\4_jpg.rf.5af1bbcf33349341d929ae9413b3d27c.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\5_jpg.rf.624ed04ff4c50570b98fff437d5b3d51.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\6_jpg.rf.e3771ba9bc587beb14ac322ad97e8a19.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\7_jpg.rf.99a692ba22659fac8016608b8c029ad1.jpg: ignoring corrupt image/label: labels require 9 columns each train: WARNING ⚠️ E:\Py_Project\yolov8\scallop\data\images\train\8_jpg.rf.0587ce002c71c9b3a754e57c3a89d0b5.jpg: ignoring corrupt image/label: labels require 9 columns each train: New cache created: E:\Py_Project\yolov8\scallop\data\labels\train.cache WARNING ⚠️ No images found in E:\Py_Project\yolov8\scallop\data\labels\train.cache, training may not work correctly. See https://docs.ultralytics.com/datasets for dataset formatting guidance. Traceback (most recent call last): File "E:\Py_Project\yolov8\scallop\yolov8-42\42_demo\start_train.py", line 19, in <module> results = model.train(data='E:\\Py_Project\\yolov8\\scallop\\yolov8-42\\ultralytics\\cfg\\datasets\\A_my_data.yaml', epochs=15, imgsz=640, device=[], workers=0, batch=4, cache=True, amp=False) # 开始训练 File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\engine\model.py", line 811, in train self.trainer.train() File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\engine\trainer.py", line 327, in _do_train self._setup_train(world_size) File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\engine\trainer.py", line 291, in _setup_train self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=LOCAL_RANK, mode="train") File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\models\yolo\detect\train.py", line 49, in get_dataloader dataset = self.build_dataset(dataset_path, mode, batch_size) File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\models\yolo\detect\train.py", line 43, in build_dataset return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs) File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\data\build.py", line 87, in build_yolo_dataset return dataset( File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\data\dataset.py", line 65, in __init__ super().__init__(*args, **kwargs) File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\data\base.py", line 74, in __init__ self.labels = self.get_labels() File "E:\Py_Project\yolov8\scallop\yolov8-42\ultralytics\data\dataset.py", line 162, in get_labels len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) ValueError: not enough values to unpack (expected 3, got 0) 进程已结束,退出代码为 1
08-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值