选择排序

选择排序

标签(空格分隔): python-排序算法



基本算法:一次确定一个最大值,或者最小值

# 简单选择排序 降序排列
lst = [1, 9, 2, 8, 7, 3, 6, 5, 4]
length = len(lst)   # 计算长度

for i in range(length): 
    maxindex = i    # 降序排列, 每次认为自己为最大值

    for j in range(i+1, length):  
        if lst[j] > lst[maxindex]:
            maxindex = j

    if i != maxindex:   # 当 i != maxindex 是, 再交换,可以减少几次交换
        lst[i], lst[maxindex] = lst[maxindex], lst[i]
        
print("简单选择排序实现: {}".format(lst))

二元选择排序

  • [x] 优化实现思路
    • 同时固定左边最大值, 和右边最小值(降序排列)
  • [x] 优点
    • 减少元素迭代的次数
  • [x] 时间复杂度为:
    • O(n*(n/2))

算法优化: 一躺确定一个最大值,一个最小值

# 二元选择排序算法 降序排列
lst = [1, 9, 2, 8, 7, 3, 6, 5, 4]
length = len(lst)

for i in range(length//2): # 这里不是 length//2+1的原因是, 如果是奇数,极大值极小值交换就可以了,剩下的一定是中间值,或者,等于极大值或者极小值
    maxindex = i
    minindex = - i - 1
    minorigin = minindex

    for j in range(i+1, length-i):  # 计算极值
        if lst[j] > lst[maxindex]:
            maxindex = j
        if lst[-j-1] < lst[minindex]:
            minindex = -j-1

    # 实现交换
    if i != maxindex:
        lst[maxindex], lst[i] = lst[i], lst[maxindex]

        # 如果初始的极大值的位置是极小值, 则极大值交换后, 会影响极小值的位置
        if i == minindex or i == length + minindex:
            # i == length + minindex   考虑的是 minindex是负索引的情况
            minindex = maxindex

    if minorigin != minindex:
        lst[minorigin], lst[minindex] = lst[minindex], lst[minorigin]

print("二元选择排序实现: {}".format(lst))

算法改进: 如果再一轮中确认的最大值和最小值是同一个,则可以结束排序了

  • [x] 改进思路
    • 1、再二元选择排序中,如果在一轮比较中,极值相等,则可以可以确定排序已经完成,则可以提前跳出循环
    • 2、如果最小值和待交换的值相等,则可以不用交换
  • [x] 优点
    • 减少迭代元素次数
    • 减少元素交换次数
# 二元选择排序算法 降序排列
lst = [1, 9, 2, 8, 7, 3, 6, 5, 4]
length = len(lst)

for i in range(length//2): # 这里不是 length//2+1的原因是, 如果是奇数,极大值极小值交换就可以了,剩下的一定是中间值,或者,等于极大值或者极小值
    maxindex = i
    minindex = - i - 1
    minorigin = minindex

    for j in range(i+1, length-i):  # 计算极值
        if lst[j] > lst[maxindex]:
            maxindex = j
        if lst[-j-1] < lst[minindex]:
            minindex = -j-1

    # 优化点: 如果极大值和极小值相等,则排序已经完成
    if lst[minindex] == lst[maxindex]:
        break

    # 实现交换
    if i != maxindex:
        lst[maxindex], lst[i] = lst[i], lst[maxindex]

        # 如果初始的极大值的位置是极小值, 则极大值交换后, 会影响极小值的位置
        if i == minindex or i == length + minindex:
            # i == length + minindex   考虑的是 minindex是负索引的情况
            minindex = maxindex

    if minorigin != minindex and lst[minindex] != lst[minorigin]:
        # 优化点:lst[minindex] != lst[maxindex], 如果值已经相同则可以不用交换了
        lst[minorigin], lst[minindex] = lst[minindex], lst[minorigin]

print("二元选择排序实现: {}".format(lst))

简单选择排序总结

  • [x] 简单选择排序需要数据一轮一轮比较,并再每一轮中发现极值
  • [x] 没有办法知道当前轮是否已经达到排序要求,但是可以知道极值是否在目标索引位置上
  • [x] 遍历次数 1,... n-1 之和, n(n-1)/2
  • [x] 时间复杂度为: O(n*n)

简单选择排序和冒泡法的比较

  • [x] 减少了交换次数,提高了效率,性能略高于冒泡法

转载于:https://www.cnblogs.com/jingru-QAQ/p/11405466.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值