作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing
本文网址:https://blog.csdn.net/HiWangWenBing/article/details/119978799
目录
4.3 步骤3:构建最小二乘的残差函数,并计算最佳参数(最关键步骤)
第1章 什么是函数逼近?
1.1 抛出问题1:函数插值
利用有限的样本数据,发现其内在的规律,并用这个规律预测未来新的数据。
(1)单个数据点
- 0次函数通过样本点:唯一确定一个点 y = f(x) = a0
- 1次直线函数通过样本点:可以有无数 y = f(x) = a1x + a0
- 2次抛物线函数通过样本点:可以有无数 y = f(x) = a1x^2 + a1x + a0
(2)2个数据点
- 0次函数通过样本点:无
- 1次直线函数通过样本点:唯一直线 y = f(x) = a1x + a0
- 2次抛物线函数通过样本点:可以有无数 y = f(x) = a1x^2 + a1x + a0
(3)3个数据点
- 0次函数通过样本点:无
- 1次直线函数通过样本点:无
- 2次抛物线函数通过样本点:唯一抛物线y = f(x) = a1x^2 + a1x + a0
问题:
如果有(xn+1,yn+1), (xn,yn)........(x1,y1), (x0,y0)样本点,那么如何选择一个最低次的多项式函数,可以穿过上述样本点?
推测:
对应n+1个点,可以唯一的确定一个一元n次的多项式函数,该多项式函数可以穿越所有n+1个点。
1.2 抛出问题2:函数拟合
如果有n个点,不要求选出的函数穿越所有的点,而是根据这些点构建的轮廓,选择一个更低维度(次数)的函数尽可能的靠近这些样本点呢?
当函数的次数远远小于样本点的次数是,该如何选择低次的函数?
1.3 什么是回归
回归与拟合是基本相同的概念。线性拟合通常称为线性回归。
第2章 函数拟合
2.1 插值有时候插值并不是最好的选择
(1)简单直线拟合好于多项式拟合
在上图图有,有几十个样本点,如果用多项式插值来进行函数逼近,虽然插值函数在样本点的误差为0,但很显然,需要高次多项式来进行逼近。
如果样本点有几百个,那么多项式的次数高达几百次。
从图中可以大致看出,要逼近上述样本点,只需要一个简单的线性函数即可:y=ax+b,这种函数逼近称为拟合。
(2)抛物线逼近
同理,对上述样本点的逼近,也不需要几十次的多项式进行插值,值需要一个简单的抛物线就可以进行逼近:y =ax^2 + bx + c,,这种函数逼近称为拟合。
(3)三角函数拟合
2.2 什么函数拟合
2.2 函数拟合的基本步骤
步骤1:构建样本
(1)读取已有样本数据,并图形展示样本数据。或者
(2)构建自行测试样本数据
(3)图形化展示样布数据(散点图)
步骤2:选择函数模型
根据散点图,选择函数类,函数类可以从初等函数中进行选取,如线性函数、二次或多次多项式函数、三角函数等。
步骤3: 构建最小二乘的残差函数,并计算最佳参数(最关键步骤)
(1)选择最佳拟合的范数(这里选择最小二乘法)
选取了函数类型后,每个函数都有自己的待定参数,不同的参数,其拟合效果是不同的,如何选择函数的参数,使得拟合效果最好呢?常有的有最小二乘法。
最小二乘法是函数拟合最重要的环节之一。
(2)计算最佳参数(这是最关键、最核心的步骤)
最小二乘法得到的loss残差函数是一个多元二次多项式函数:
- 残差函数的“元”的个数,就是拟合函数的参数
- 残差函数的“元”的次数:2次
- 拟合最好的依据:多元函数的最小值点处的各个变量值,就是拟合函数最好的参数。
求解多元二次多项式函数的方法有多种:
- 法向量解线性方程组法
- 梯度下降法
无论哪种方法,都是通过求残差函数的最小值,基于指定样本数据,获得了最佳参数的拟合函数。
步骤4:利用拟合函数进行数据预测
生成一组输入数据,利用第4步获得的拟合函数的参数以及对应的拟合函数,对数据进行函数运算(预测),得到新的输出数据。
步骤5:图形展示
把预测数据与采样数据、理论曲线一起进行图形展示。
第3章 最小二乘法的一元2次方程解析法求解
3.1 什么是最小二乘法
3.2 线性拟合函数的最小二乘法的几何意义
注意:
最小二乘选择一个适当的直线参数,使得所有样本点处的yi - f(xi) = yi -(axi+b)的平方和的平均值最小,而不是所有样本点到拟合直线的距离的和的平均值最小。
这样选择,主要处于如下原因:
(1)计算简单:求点到拟合曲线的距离要比直接计算样本点处的Y值的差复杂很多。
(2)符合拟合函数原本的物理意义:拟合函数要在所有的样本点xi处,其f(xi)也尽可能的相等,或者说误差尽可能的小。
3.3 最小二乘算法实现
(1)最小二乘法求解1:一元参数的解析法求解
(2)最小二乘法求解2:“法向量”线性方程组求解法
(3)最小二乘法求解3:梯度下降法
3.4 最小二乘法求解1:一元参数的解析法求解
如果拟合函数只有一个参数,如y=wx + 1 或 y = wx^2 + 2X + 1,都只有一个参数,引起其残差函数就是一个只包含w参数的一元二次函数,一元二次方程的极小值是可以通过解析法获得的。
当x = -b/2a时,残差函数有最小值。x = -b/2a就是拟合参数的参数w。
第4章 最小二乘法求解1:解析法求解的代码示例
4.0 前置条件:
#导入库
from math import *
import time
import numpy as np
import matplotlib.pyplot as plt #画图工具
from pylab import mpl #中文字体
from scipy import optimize #最小二乘算法的算法库
4.1 步骤1:构建样本数据集
#步骤1:构建样本
#(1) 采用np, 直接手工生成样本的输入:一组等距离的分布在[-1,1]之间的100个点
sample_numbers = 50
x_data = np.linspace(0, 1, sample_numbers)
#(2) 为这些数据手工打上理论输出值(标签值):y = 2x + 1
y_data_pure = 2 * x_data + 1.0
#(3)为了模拟现实情况,通过随机数来模拟数据噪声
noise_range = 0.4
np.random.seed(10) #设置随机种子, 确保不同时候,执行结果是相同的
#randn(n)生成的0为均值,1为标准差的正态分布的n个随机数。
y_noise = np.random.randn(*x_data.shape) * noise_range # *x_data.shape:输入样本的维度或个数
#(4)人工生成样本的输出:理论值 + 噪声
y_data_noise = y_data_pure + y_noise
#(5) 显示样本数据
# 样本的散点图
plt.scatter(x_data, y_data_noise, label="sample", color="black")
# 内在的、理论的曲线图
plt.plot(x_data, y_data_pure, label="f_pure(x)", color="blue", linewidth = 4)
#设置属性
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
plt.title("线性拟合")
plt.legend(loc="upper left")
plt.show()
4.2 步骤2:构建拟合函数
#步骤2:构建拟合函数:二元一次拟合函数, x变量,w是常量
def f_line_w(x, w):
return (w*x + 1)
4.3 步骤3:构建最小二乘的残差函数,并计算最佳参数(最关键步骤)
#步骤3: 计算拟合参数
print("利用python库提供的最小二乘算法来计算拟合函数的参数")
print("无噪声数据:")
popt, pcov = optimize.curve_fit(f_line_w, x_data, y_data_pure)
print(popt)
print(pcov)
print("参数w=", popt[0])
print("\n有噪声数据:")
popt, pcov = optimize.curve_fit(f_line_w, x_data, y_data_noise)
print(popt)
print(pcov)
print("参数w=", popt[0])
w_scipy = popt[0]
利用python库提供的最小二乘算法来计算拟合函数的参数 无噪声数据: [2.] [[0.]] 参数w= 2.0 有噪声数据: [2.03981828] [[0.00794081]] 参数w= 2.03981827977079
备注说明:
上述利用python库提供的最小二乘算法来计算拟合函数的参数。
因此没有展现用数值的方法求最小二乘最佳参数的过程。
如下的函数讲展现通过解析法法求解残差函数的最佳参数,使得残差函数输出误差最小。
print("自定义最小二乘求解拟合函数参数:解析法求一个参数")
def usr_curve_fit(input_f, input_x_data, input_y_data_noise):
b = input_f(0, 0)
n = len(x_data)
sum_sqrt_Xi_a = np.sum(np.power(input_x_data,2))
sum_2XiYi_b = np.sum(2* input_x_data * (1 - input_y_data_noise))
sum_sqrt_BYi_c = np.sum(np.power(1- input_y_data_noise,2))
return (-1*sum_2XiYi_b/(2*sum_sqrt_Xi_a), b)
print("使用无噪声数据:")
popt = usr_curve_fit(f_line_w, x_data, y_data_pure)
print(popt)
print("参数w=", popt[0])
print("\n使用有噪声数据:")
popt = usr_curve_fit(f_line_w, x_data, y_data_noise)
print(popt)
print("参数w=", popt[0])
w_usr = popt[0]
自定义最小二乘求解拟合函数参数:解析法求一个参数 使用无噪声数据: (2.0, 1) 参数w= 2.0 使用有噪声数据: (2.0398182816598647, 1) 参数w= 2.0398182816598647
很显然,该方法获得的参数与scipy库提供的算法获得的参数是一致的。
参数a= 2.03981827977079
参数a= 2.0398182816598647
4.4 步骤4:利用拟合函数进行数据预测
# 步骤4:利用获得的拟合函数进行数据预测
# scipy 算法的拟合数据
y_data_scipy = f_line_w(x_data, w_scipy)
# 解析法的拟合数据
y_data_usr = f_line_w(x_data, w_usr)
4.5 步骤5:图形展示
#步骤5: 图形化展示
#(1) 显示样本数据曲线
plt.scatter(x_data, y_data_noise, label="sample", color="black")
#(2) 显示理论数据曲线
plt.plot(x_data, y_data_pure, label="intrinsic", color="blue", linewidth = 2)
#(3-1) 显示预测数据曲线 - scipy库实现
plt.plot(x_data, y_data_scipy, label="predict", color="red", linewidth = 2)
#(3-2) 显示预测数据曲线 - 自定义实现
#plt.plot(x_data, y_data_usr, label="usr", color="green", linewidth = 2)
#设置属性
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
plt.title("线性拟合")
plt.legend(loc="upper left")
plt.show()
从上图可以看出:解析法获得拟合函数与scipy库获得的拟合函数,基本重合。
作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing
本文网址:https://blog.csdn.net/HiWangWenBing/article/details/119978799