最小二乘法解的矩阵形式
文章目录
简介
最近在看 NNDL,其中有一个经验风险最小化的例子,即最小二乘法,定义如下:
给定一组包含 N N N 个训练样本的训练机 D = { ( x ( n ) , y ( n ) ) } n = 1 N D=\{(\mathbf{x}^{(n), }y^{(n)})\}_{n = 1}^N D={
(x(n),y(n))}n=1N 。使用线性回归。样本和参数均为列向量。
f ( x ; w ) = w T x f(\mathbf{x};\mathbf{w}) = \mathbf{w}^T\mathbf{x} f(x;w)=wTx
平方损失函数
经验风险最小化,训练集的风险被定义为, X = [ x 1 , x 2 , ⋯ , x N ] T X=[\mathbf{x}_1, \mathbf{x}_2,\cdots,\mathbf{x}_N]^T X=[x1,x2,⋯,xN]T:
R ( w ) = ∑ n = 1 N 1 2 ( y n − w T x ( n ) ) = 1 2 ∥ y − X w ∥ 2 = 1 2 ( y − X w ) T ( y − X w ) = 1 2 ( y T − w T X T ) ( y − X w ) = 1 2 ( y T y − y T X w − w T X T y + w T X T X w ) \begin{aligned} R(\mathbf{w}) &= \sum_{n = 1}^N\frac{1}{2}\left(y^{n} - \mathbf{w}^T\mathbf{x}^{(n)}\right)\\&= \frac{1}{2}\|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2\\&= \frac{1}{2}(\mathbf{y} -\mathbf{Xw})^T(\mathbf{y} - \mathbf{Xw})\\&= \frac{1}{2}(\mathbf{y}^T-\mathbf{w}^T\mathbf{X}^T)(\mathbf{y} - \mathbf{Xw}) \\&= \frac{1}{2}\left(\mathbf{y}^T\mathbf{y} - \mathbf{y}^T\mathbf{X}\mathbf{w} - \mathbf{w}^T\mathbf{X}^T\mathbf{y} + \mathbf{w}^T\mathbf{X}^T\mathbf{X}\mathbf{w}\right) \end{aligned} R(w)=n=1∑N21(yn−wTx(n))=21∥y−Xw∥2=21(y−Xw)T(y

本文介绍了最小二乘法在线性回归中的应用,通过矩阵形式解析平方损失函数,展示如何对参数求导,并求解经验风险最小化的最优参数。通过分析,得到导数为0时的解为(XTX)^{-1}XTy。
最低0.47元/天 解锁文章
4649

被折叠的 条评论
为什么被折叠?



