[NNDL] 最小二乘法解的矩阵形式

本文介绍了最小二乘法在线性回归中的应用,通过矩阵形式解析平方损失函数,展示如何对参数求导,并求解经验风险最小化的最优参数。通过分析,得到导数为0时的解为(XTX)^{-1}XTy。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小二乘法解的矩阵形式

简介

最近在看 NNDL,其中有一个经验风险最小化的例子,即最小二乘法,定义如下:

给定一组包含 N N N 个训练样本的训练机 D = { ( x ( n ) , y ( n ) ) } n = 1 N D=\{(\mathbf{x}^{(n), }y^{(n)})\}_{n = 1}^N D={ (x(n),y(n))}n=1N 。使用线性回归。样本和参数均为列向量。
f ( x ; w ) = w T x f(\mathbf{x};\mathbf{w}) = \mathbf{w}^T\mathbf{x} f(x;w)=wTx

平方损失函数

经验风险最小化,训练集的风险被定义为, X = [ x 1 , x 2 , ⋯   , x N ] T X=[\mathbf{x}_1, \mathbf{x}_2,\cdots,\mathbf{x}_N]^T X=[x1,x2,,xN]T
R ( w ) = ∑ n = 1 N 1 2 ( y n − w T x ( n ) ) = 1 2 ∥ y − X w ∥ 2 = 1 2 ( y − X w ) T ( y − X w ) = 1 2 ( y T − w T X T ) ( y − X w ) = 1 2 ( y T y − y T X w − w T X T y + w T X T X w ) \begin{aligned} R(\mathbf{w}) &= \sum_{n = 1}^N\frac{1}{2}\left(y^{n} - \mathbf{w}^T\mathbf{x}^{(n)}\right)\\&= \frac{1}{2}\|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2\\&= \frac{1}{2}(\mathbf{y} -\mathbf{Xw})^T(\mathbf{y} - \mathbf{Xw})\\&= \frac{1}{2}(\mathbf{y}^T-\mathbf{w}^T\mathbf{X}^T)(\mathbf{y} - \mathbf{Xw}) \\&= \frac{1}{2}\left(\mathbf{y}^T\mathbf{y} - \mathbf{y}^T\mathbf{X}\mathbf{w} - \mathbf{w}^T\mathbf{X}^T\mathbf{y} + \mathbf{w}^T\mathbf{X}^T\mathbf{X}\mathbf{w}\right) \end{aligned} R(w)=n=1N21(ynwTx(n))=21yXw2=21(yXw)T(y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值