# 2020(HNCPC)湖南省大学生程序设计竞赛editorial

### B. 2020-vs-2018

judge wether exist 1.

### C. absolute-difference-equation

The problem is the simple version of the follow problem:
agc043B

### E make-roundgod-very-happy

let l l be the max x x so that x < i x<i and a x ≥ a i a_x\ge a_i ,let r r be the min x x so that x > i x>i and a x ≥ a i a_x\ge a_i ，consider values to [ l , r ] [l,r] from the position i i

### G odd-dmc-validation

consider n>=3，if a1&1=1 a2&2=0 a3&3=1 then (a1&1)=(a3&1) so that the answer always “no”.

## H 矩阵并

let n=min(a,x2-1),m=min(b,y2-1)。
if a<x1||b<y1,the 交集面积 is 0.
else is ∑ i = a n ∑ j = b m ( x 2 − i ) ( y 2 − j ) = ∑ i = a n ∑ j = b m ( x 2 y 2 − i − j + i j ) ) \sum\limits_{i=a}^n\sum\limits_{j=b}^m(x_2-i)(y_2-j)=\sum\limits_{i=a}^n\sum\limits_{j=b}^m(x_2y_2-i-j+ij))

### I segment-colinear-triple

judge wether can choose any three node in vertice from L1 and L3,judge wether L2 vertice in the triange combine by the three node.

07-03
08-30 339

10-06 134
10-01 47
12-25 6014