Spark SQL中RDD和DataSet之间相互转换

该博客展示了如何在Scala中使用Spark SQL进行RDD与DataSet之间的转换。首先创建SparkSession,然后将User类的RDD转换为DataSet,并展示其内容。接着,将DataSet转回RDD并打印每个User对象的name和age属性。最后,将整数RDD转换为DataSet并显示。此示例突出了Spark数据处理的灵活性。
摘要由CSDN通过智能技术生成
package com.huc.sparkSql

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

/**
 * 1.RDD 转换为DataSet
 * RDD.map{x=>User(x._1,x._2)}.toDS()
 * SparkSQL 能够自动将包含有样例类的RDD转换成DataSet,样例类定义了table的结构,样例类属性通过反射变成了表的列名。
 * 样例类可以包含诸如Seq或者Array等复杂的结构。
 * 2.DataSet转换为RDD
 * DS.rdd
 */
object Test03_RDDAndDataSet {
  def main(args: Array[String]): Unit = {
    // 1. 创建sparkSession配置对象
    val conf: SparkConf = new SparkConf().setAppName("sparkSql").setMaster("local[*]")

    // 2. 创建一个sparkSession
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()

    val sc: SparkContext = spark.sparkContext
    // 3. 使用sparkSession
    val userRdd: RDD[User] = sc.makeRDD(List(User("zhangsan", 10), User("lisi", 20)))

    // 相互转换的时候,需要导入隐式转换
    import spark.implicits._

    val ds: Dataset[User] = userRdd.toDS()
    ds.show()

    // 将样例类的ds转换回Rdd
    // 不会丢失类型
    val rdd: RDD[User] = ds.rdd
    for (elem <- rdd.collect()) {
      println(elem.name)
      println(elem.age)
    }

    // 如果是普通类型的rdd转换为ds
    // 一般用于样例类之间的相互转化,不然意义不大
    val rdd1: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4, 5), 2)

    val ds1: Dataset[Int] = rdd1.toDS()
    ds1.show()

    // 4. 关闭sparkSession
    spark.close()
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值