最近,开放 LLM 排行榜 迎来了 3 个新成员: Winogrande、GSM8k 以及 DROP,它们都使用了 EleutherAI Harness 的原始实现。一眼望去,我们就会发现 DROP 的分数有点古怪: 绝大多数模型的 F1 分数都低于 10 分 (满分 100 分)!我们对此进行了深入调查以一探究竟,请随我们一起踏上发现之旅吧!
初步观察
在 DROP (Discrete Reasoning Over Paragraphs,段落级离散推理) 评估中,模型需要先从英文文段中提取相关信息,然后再对其执行离散推理 (例如,对目标对象进行排序或计数以得出正确答案,如下图中的例子)。其使用的指标是自定义 F1 以及精确匹配分数。

三周前,我们将 DROP 添加至开放 LLM 排行榜中,然后我们观察到预训练模型的 DROP F1 分数有个奇怪的趋势: 当我们把排行榜所有原始基准 (ARC、HellaSwag、TruthfulQA 和 MMLU) 的平均分 (我们认为其一定程度上代表了模型的总体性能) 和 DROP 分数作为两个轴绘制散点图时,我们本来希望看到 DROP 分数与原始均分呈正相关的关系 (即原始均值高的模型,DROP 分数也应更高)。然而,事实证明只有少数模型符合这一预期,其他大多数模型的 DROP F1 分数都非常低,低于 10。