无人机目标检测 Darknet-ROS 学习(三) 上一节已经讲解了Darknet-ROS项目工程里各个文件的大致作用以及ROS节点之间的相互关系,希望可以帮助理解yolo是如何在ROS平台上运行的。这一节来更加细致的学习一下相机D455和yolo的使用以及Darknet-ROS的运行。
DETR:Transformer的目标检测(detection)- Demo Transformer是一个基于自注意力机制的深度学习模型,它的经典结构:encoder-decoder。前几年该模型在NLP领域有非常好的应用,最近查阅论文时发现Transformer**逐渐在CV方向发力,ViT (Vision Transformer)的提出更是添了一把火,今天就来简单了解一下DETR。
无人机目标检测 Darknet-ROS 学习(二) 上节我们已经安装好ROS,今天来看看如何在`ROS`环境下进行目标检测。最常使用的目标检测算法就是`yolo`,如今yolo算法已经发展非常成熟了,这次我们选择使用`yolo v4 tiny`来进行目标检测。
无人机目标检测 Darknet-ROS 学习(一) 在无人机上实现目标检测,使用的设备是`阿木实验室P200`,飞控是`PX4`,板载计算机是`TX2`,目的是在无人机有限的计算资源上实现快速准确的目标检测,并且可以将目标检测结果传输给无人机,帮助无人机进行感知融合,智能避障以及路径规划等扩展任务。
web 内网穿透 花生壳为WordPress网站设置内网穿透问题简介:因学校要求建立网站,网站建好后处于试验阶段,在无已备案域名和服务器的情况下进行测试,要求外部设备通过公网访问网页环境:Mac Big Sur + WordPress 5.6 + XAMPP + 花生壳 1.4前期准备:根据官网教程下载花生壳Mac version 1.4下载完后注册账号等,会赠送一个免费域名完成WordPress网站的本地搭建,本地运行成功设置内网穿透花生壳映射花生壳管理:打开客户端,进入花生壳管理HT