2021.10.14模拟赛

本文探讨了在图论中如何处理最大生成树问题。针对最大生成树算法,作者介绍了两种方法:一种是通过多次运行Kruskal算法,虽然在大数据下可能导致超时;另一种是维护多个并查集,有效地减少了时间复杂度。文章还涉及了矩阵染色问题和因数序列的计算,展示了解决这些问题的思路和代码实现。
摘要由CSDN通过智能技术生成

A

  “尽可能多的边”、“边权最大”、“不存在环” = “最大生成树”。于是就想到了跑 k 遍 kruskal,愉快的 O(mlogm + k(m + n))) 然后愉快的超时(最大数据要跑将近40秒)。不过还是有50分的。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define MAXN 1010
#define MAXM 300300

int read(){
	int x = 0; char c = getchar();
	while(c < '0' or c > '9') c = getchar();
	while('0' <= c and c <= '9'){
		x = x * 10 + (c - '0');
		c = getchar();
	}
	return x ;
}

int n = 0; int m = 0;
int k = 0;

struct Tedge{
	int x, y;
	int val; int idx;
	int times;
	bool used;
	bool operator < (const Tedge& b)const {
		return val < b.val;
	}
	bool operator > (const Tedge& b)const {
		return val > b.val;
	}
}edge[MAXM];
bool comp(Tedge a, Tedge b){
	return a.val > b.val;
}

int parent[MAXN] = { 0 };
void init(){
	for(int k = 1; k <= n; k++){
		parent[k] = k;
	}
}

int findRoot(int x){
	if(x == parent[x]){
		return x;
	}
	return parent[x] = findRoot(parent[x]);
}

void unionVertices(int x, int y){
	parent[findRoot(x)] = findRoot(y);
}

int main(){
	n = read(); m = read(); k = read();
	for(int i = 1; i <= m; i++){
		edge[i].x = read(); edge[i].y = read();
		edge[i].val = read(); edge[i].idx = i;
	}
	
	sort(edge+1, edge+m+1, comp);
	for(int i = 1; i <= k; i++){
		init();
		for(int j = 1; j <= m; j++){
			Tedge e = edge[j];
			if(!e.used and findRoot(e.x) != findRoot(e.y)){
				unionVertices(e.x, e.y);
				edge[j].used = 1;
				edge[e.idx].times = i;
			}
		}
	}
	
	for(int i = 1; i <= m; i++){
		printf("%d\n", edge[i].times);
	}
	
	return 0;
}

(以上是50分做法)
  我们考虑维护 k 个并查集,来表示在时间 t 时整个图的连通性。对于第 t 个并查集来说,它存储的时间 t 时的最大生成树(删除的边)。
  在主函数中,枚举每一条边(从大到小),找到这条边所连的两个点在在并查集中不连通的第一个并查集(假设这个并查集是第 t 个),标记这个边被删除(就是被选中作为第 t 次的最大生成树中的一条边)的时间 t 。然后将这两个点在这个并查集里连起来(边被选中了),再然后我们做一个这条边的时间标记,下一次查询到相同节点的边我们就从这个标记开始往后搜。
  AC 代码:

#include<bits/stdc++.h>
using namespace std;
#define in read()
#define MAXN 1010
#define MAXM 300300
#define MAXK 10010

inline int read(){
	int p = 0; int f = 1;
	char c = getchar();
	while(c > '9' or c<'0'){
		if(c == '-') f =- 1;
		c = getchar();
	}
	while(c >= '0' and c <= '9'){
		p = p * 10 + c - '0';
		c=getchar();
	}
	return p * f;
}

int n = 0; int m = 0;
int k = 0;
struct Tedge{
	int x, y;
	int val; int idx;
}edge[MAXM];
bool comp(Tedge a, Tedge b){
	return a.val > b.val; 
}

int parent[MAXN][MAXK] = { 0 };

void init(){
	for(int i = 1; i <= n; i++){
		for(int j = 1; j <= k; j++){
			parent[i][j] = i;
		}
	}
}

int findRoot(int x, int kth){
	if(x == parent[x][kth]){
		return x;
	}
	return parent[x][kth] = findRoot(parent[x][kth], kth);
}

int vis[MAXM] = { 0 };
int cur[MAXN][MAXN] = { 0 };

int main(){
	n = in; m = in; k = in;
	init();
	for(int i = 1; i <= m ;i++){
		edge[i].x = in; edge[i].y = in;
		edge[i].val = in; edge[i].idx = i;
	}
	sort(edge+1, edge+m+1, comp);
	
	for(int i = 1; i <= m; i++){
		int x = edge[i].x; int y = edge[i].y;
		int t = cur[x][y] + 1;
		int xRoot = findRoot(x, t); int yRoot = findRoot(y, t);
		while(xRoot == yRoot and t < k){
			t++; xRoot = findRoot(x, t); yRoot = findRoot(y, t);
		}	
		if(xRoot == yRoot) continue;
		vis[edge[i].idx] = t;
		parent[yRoot][t] = xRoot;
		cur[x][y] = t; cur[y][x] = t;
	}
	
	for(int i = 1; i <= m; i++){
		printf("%d\n", vis[i]);
	}
	
	return 0;
}

B

  首先,只有全白的情况是不可能涂黑的,所以特判全白,输出-1。然后我们在分析过程中会发现以下事实:

  1. 记 c 表示至少有一个白格的列的个数,我们发现,在矩阵中的某一行完全变黑之前,c 是不会减少的。当矩阵中的某一行完全变黑之后,每一次操作可以将 c 减少 1。
  2. 如果在第 r 列有一个黑色方格,那我们可以通过 x 次操作将第 r 行全部变成黑色。其中我们记第 r 行中初始时黑色的个数为 a,则 x = n - a。(x 其实就是这一行白格子的个数qwq
  3. 如果在第 r 列一个黑色方格都没有,则我们需要一次额外的操作在第 r 列里搞一个黑格出来,所以需要的操作次数为 x - 1。

  综上所述,总的操作次数为:
c + min ⁡ i = 1 n x    o r    ( x − 1 ) c + \min_{i=1}^n x \; or \; (x-1) c+i=1minnxor(x1)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 505

int n = 0;
int mmap[MAXN][MAXN] = { 0 };
int cnt = 0;
int c = 0;

int main(){
	scanf("%d", &n);
	for(int i = 1; i <= n; i++){
		scanf("\n");
		for(int j = 1; j <= n; j++){
			char temp;
			scanf("%c", &temp);
			if(temp == '#'){
				cnt++;
				mmap[i][j] = 1;
			}
		}
	}
	
	if(cnt == 0){
		printf("%d\n", -1);
		return 0;
	}
	
	for(int i = 1; i <= n; i++){
		for(int j = 1; j <= n; j++){
			if(mmap[j][i] == 0){
				c++; break;
			}
		}
	}
	
	int ans = 1 << 30;
	for(int i = 1; i <= n; i++){
		int x = 0; bool is = false;
		for(int j = 1; j <= n; j++){
			if(mmap[j][i]) is = true;
			if(!mmap[i][j]){
				x++;
			}
		}
		if(!is) x++;
		ans = min(x, ans);
	}
	
	printf("%d\n", ans + c);
	
	return 0;
}

C

  我们设一个长度为 2m 的 n 的因数的序列 A: a 1 , a 2 , ⋯   , a 2 m a_1, a_2, \cdots , a_{2m} a1,a2,,a2m。如果他们的乘积 x 小于 n m n^m nm 也就是:
x = a 1 × a 2 × ⋯ × a 2 m = ∏ i = 1 2 m a i < n m x = a_1 \times a_2 \times \cdots \times a_{2m} = \prod_{i=1}^{2m}a_i < n^m x=a1×a2××a2m=i=12mai<nm
  则另一个长度为 2m 的 n 的因数的序列为 A’: n a 1 , n a 2 , ⋯   , n a 2 m \frac{n}{a_1}, \frac{n}{a_2}, \cdots, \frac{n}{a_{2m}} a1n,a2n,,a2mn。他们的乘积 x’ 就是:
x ′ = n a 1 × n a 2 × ⋯ × n a 2 m = n 2 m ∏ i = 1 2 m a i = n 2 m x x' = \frac{n}{a_1} \times \frac{n}{a_2} \times \cdots \times \frac{n}{a_{2m}} = \frac{n^{2m}}{\prod_{i=1}^{2m}a_i} = \frac{n^{2m}}{x} x=a1n×a2n××a2mn=i=12main2m=xn2m
  因为 x < n m n^{m} nm 所以 x’ > n m n^m nm
  由此我们知道一个乘积小于 n m n^m nm 的序列和乘积大于 n m n^m nm 的序列是一一对应的。即这两种类型的子串数量一样。所以我们只需要计算乘积等于 n m n^m nm 的序列的数量,我们记为 x。然后计算所有可能的排列的数量,我们记为y。我们要的答案就是:
a n s = y − x 2 ans = \frac{y-x}{2} ans=2yx
  附上 std 代码:

#include <bits/stdc++.h>

using namespace std;

const int P = 998244353;

int power(int x, int y) {
  int r = 1;
  while (y) {
    if (y & 1) {
      r = (long long) r * x % P;
    }
    x = (long long) x * x % P;
    y >>= 1;
  }
  return r;
}

int main() {
  freopen("c.in", "r", stdin);
  freopen("c.out", "w", stdout);
  ios::sync_with_stdio(false);
  cin.tie(0);
  int n, m;
  cin >> n >> m;
  auto solve = [&](int e) {
    vector<int> dp(e * m + 1);
    dp[0] = 1;
    for (int i = 1; i <= m * 2; ++i) {
      for (int j = 1; j <= e * m; ++j) {
        dp[j] = (dp[j] + dp[j - 1]) % P;
      }
      for (int j = e * m; j > e; --j) {
        dp[j] = (dp[j] + P - dp[j - e - 1]) % P;
      }
    }
    return dp[e * m];
  };
  int same = 1;
  int ways = 1;
  for (int p = 2; p * p <= n; ++p) {
    if (n % p == 0) {
      int e = 0;
      while (n % p == 0) {
        n /= p;
        ++e;
      }
      same = (long long) same * solve(e) % P;
      ways *= e + 1;
    }
  }
  if (n != 1) {
    same = (long long) same * solve(1) % P;
    ways *= 2;
  }
  cout << (long long) (same + power(ways, m * 2)) * (P + 1) / 2 % P << "\n";
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值