学习笔记--关于一个公式的证明

关于一个公式

(本文的大多数推导过程是作者自己 YY 出来的,不能保证严谨性)


  就是在写关于莫比乌斯反演的东西的时候,我就想着自己证明一遍莫比乌斯函数的性质(当时还没学,在边学边写),然后我就开始了疯狂的分类讨论,大概的流程是这样的:
  证明:
  首先我要证明 ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d \mid n} \mu(d) = [n = 1] dnμ(d)=[n=1] 然后我就想, n = 1 n = 1 n=1 的时候这个式子显然成立,然后我就讨论 n ≠ 1 n \neq 1 n=1 的时候。首先我想的是这个求和的式子里面一定有两项 μ ( d ) \mu(d) μ(d) μ ( n d ) \mu(\frac{n}{d}) μ(dn),这两个玩意儿是两两对应的,也就是说只要有一个 d d d 就一定能找到一个 n d \frac{n}{d} dn,因为 d 是 n 的约数嘛。然后我考虑一组比较特殊的对应 μ ( 1 ) \mu(1) μ(1) μ ( n ) \mu(n) μ(n),首先 μ ( 1 ) \mu(1) μ(1) 肯定是 1,所以我就把它根据 μ ( n ) \mu(n) μ(n) 的值分为 3 类。

  1. μ ( n ) = − 1 \mu(n) = -1 μ(n)=1
  2. μ ( n ) = 1 \mu(n) = 1 μ(n)=1
  3. μ ( n ) = 0 \mu(n) = 0 μ(n)=0

  首先分析第一类,因为 μ ( 1 ) \mu(1) μ(1) 已经和 μ ( n ) \mu(n) μ(n) 配对好了就是它俩加起来为0,所以我现在只需要证明其他的不为 0 的项加起来为 0就好了。
  怎么证呢,因为我们有一个前提, μ ( n ) = − 1 \mu(n) = -1 μ(n)=1 所以如果把 n 写成一堆质数的积的形式的话就是这样:
n = ∏ i = 1 k 1 p i n = \prod_{i = 1}^{k_1}p_i n=i=1k1pi
  而且我们这应该知道这里的 k 1 k_1 k1 一定是一个奇数,然后我们考虑一个 n 的因数 d
,他显然也可以写成这样的形式:
d = ∏ i = 1 k 2 p i d = \prod_{i=1}^{k_2}p_i d=i=1k2pi
  根据我们上面的思路,另一个与它对应的因数 d’ 就应该等于:
d ′ = n d = ∏ i = 1 k 1 p i ∏ i = 1 k 2 p i = ∏ i = 1 k 1 − k 2 p i d' = \frac{n}{d} = \frac{\prod_{i=1}^{k_1}p_i}{\prod_{i=1}^{k_2}{p_i}} = \prod_{i=1}^{k_1-k_2}p_i d=dn=i=1k2pii=1k1pi=i=1k1k2pi
  现在就应该看看 μ ( d ) + μ ( d ′ ) \mu(d) + \mu(d') μ(d)+μ(d) 是不是恒等于 0 了,如果是的话,我们就证毕了。而现在 μ ( d ) \mu(d) μ(d) μ ( d ′ ) \mu(d') μ(d) 的值肯定不是 0,所以值只和 k 1 , k 2 k_1,k_2 k1k2 的奇偶性相关。我们根据这一点就可以继续分类讨论。我们知道 k 1 k_1 k1 一定是奇数,所以我们只用讨论 k 2 k_2 k2

  1. k 2 k_2 k2 是奇数,所以 k 1 − k 2 k_1 - k_2 k1k2 就是奇数减奇数一定是偶数,所以我们得到 μ ( d ) = − 1 \mu(d) = -1 μ(d)=1 μ ( d ′ ) = 1 \mu(d') = 1 μ(d)=1。此时 μ ( d ) + μ ( d ′ ) = 0 \mu(d) + \mu(d') = 0 μ(d)+μ(d)=0
  2. k 2 k_2 k2 是偶数,所以 k 1 − k 2 k_1 - k_2 k1k2 就是奇数减偶数一定是奇数,所以我们得到 μ ( d ) = 1 \mu(d) = 1 μ(d)=1 μ ( d ′ ) = − 1 \mu(d') = -1 μ(d)=1。此时 μ ( d ) + μ ( d ′ ) = 0 \mu(d) + \mu(d') = 0 μ(d)+μ(d)=0

  所以我们就得到了当 μ ( n ) = − 1 \mu(n) = -1 μ(n)=1 ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d \mid n} \mu(d) = [n = 1] dnμ(d)=[n=1]

  然后我想着第一种已经整出来了,第二种应该也比较好证,所以我又开始讨论第二种情况,也就是 μ ( n ) = 1 \mu(n) = 1 μ(n)=1 的情况。与前面第一种情况同理,我们可以得到 μ ( 1 ) + μ ( n ) = 2 \mu(1) + \mu(n) = 2 μ(1)+μ(n)=2,也就是要证明剩下的加起来为 -2。-2 这个数看起来不好凑啊,但是不慌,我们先继续往下写。
  和前面一样,我们得到了 k 1 k_1 k1 一定是偶数,所以我们讨论 k 2 k_2 k2 的奇偶性。第一种 k 2 k_2 k2 为奇数,然后就是偶数减奇数也是奇数,那么 μ ( d ) + μ ( d ′ ) = − 2 \mu(d) + \mu(d') = -2 μ(d)+μ(d)=2。第二种, k 2 k_2 k2 是偶数,然后就是偶数减偶数也一定是偶数,那么 μ ( d ) + μ ( d ′ ) = 2 \mu(d) + \mu(d') = 2 μ(d)+μ(d)=2。这看起来也就好办了,我们只需要证明 k 2 k_2 k2 是偶数的情况一定比 k 2 k_2 k2 是奇数的情况少一个就凑出了一个 -2。这显然要用到组合数学的知识,但是我的组合数学掌握的不好,所以我直接就上网搜,然后看到了这篇文章:一个集合选奇数个和偶数个情况研究。在这里我花一点地方介绍一下这篇文章里的东西。
  这篇文章里要证明一个式子 :
∑ i    m o d    2 = 1 C n i − ∑ j    m o d    2 = 0 C n j = [ n = 0 ] \sum_{i\;mod \; 2=1}C_n^i - \sum_{j\;mod\; 2 = 0}C_n^j = [n=0] imod2=1Cnijmod2=0Cnj=[n=0]
  而他这里的 j 是可以取 0 的,我上面要证明取偶数比取奇数少 1 是不能取 0 的,所以只要把它的这个式子整出来了,我上面的那个命题也就自然成立了。所以我很兴奋的点进去看了看,前半部分我是看懂了,而且他证明这个式子的思路和我证明莫比乌斯函数性质的思路出奇的一致(仅指前半部分,感兴趣的可以去看看),然而我看到后半部分用二项式定理证明这个式子的时候,我就想既然前面的思路和我的思路那么像,而且这个能用二项式定理证明,那莫比乌斯函数性质是不是也能用二项式定理证明呢?
  然后我就模仿他的思路证了一下,然后发现真的可以,而且用二项式定理来证明比我的那个方法要简洁太多了,所以我就在莫比乌斯反演那篇文章里面写了用二项式定理的证明方法。
  上面那个式子的证明(也就是第二种情况的证明)感兴趣的可以去看看那篇文章,我就不在这里写了。剩下的地方我就把最后一种情况 μ ( n ) = 0 \mu(n) = 0 μ(n)=0的证明过程写完。
μ ( 1 ) + μ ( n ) = 1 \mu(1) + \mu(n) = 1 μ(1)+μ(n)=1,所以我们要证明剩下的所有 μ ( d ) \mu(d) μ(d) 加起来等于 -1,但是这次我们不能保证所有的 μ ( d ) \mu(d) μ(d) 都不为 0,但是我们只学要讨论那些不为 0 的情况。我们就可以把这些因数 d 分为三类。

  1. μ ( d ) = 0 \mu(d) = 0 μ(d)=0 这一类我们可以不用管,因为他不影响最后的值。
  2. μ ( d ) ≠ 0 \mu(d) \neq 0 μ(d)=0 μ ( d ′ ) = μ ( n d ) ≠ 0 \mu(d') = \mu(\frac{n}{d}) \neq 0 μ(d)=μ(dn)=0 的(这一类 d 只在 n 的所有质因子的幂次都不大于 2 的时候存在)。也就是说这一类中的这两个因数都可以写成这种形式:
    d = ∏ i = 1 k 2 p i d ′ = ∏ i = 1 k 3 p i d = \prod_{i=1}^{k_2}p_i \qquad d' = \prod_{i=1}^{k_3}p_i d=i=1k2pid=i=1k3pi
    显然在 d ≠ d ′ d \neq d' d=d 的时候 k 2 和 k 3 k_2 和 k_3 k2k3 的奇偶性是相反的,所以 μ ( d ) + μ ( d ′ ) = 0 \mu(d) + \mu(d') = 0 μ(d)+μ(d)=0
  3. μ ( d ) = ≠ 0 \mu(d) = \neq 0 μ(d)==0 μ ( d ′ ) = μ ( n d ) = 0 \mu(d') = \mu(\frac{n}{d}) = 0 μ(d)=μ(dn)=0。在这里类里面我们就不用管 d’ ,只用关心 d 就好了。跟前面一样,d 可以写成 d = ∏ i = 1 k 2 p i d = \prod_{i=1}^{k_2}p_i d=i=1k2pi,当 k 2 k_2 k2 是奇数时 μ ( d ) = − 1 \mu(d) = -1 μ(d)=1 k 2 k_2 k2 是偶数时, μ ( d ) = 1 \mu(d) = 1 μ(d)=1。又因为第二种情况和第一种情况的 d 加起来都是 0,所以我们需要 k 2 k_2 k2 是奇数的情况比 k 2 k_2 k2 是偶数的情况多 1,就能凑出一个 -1。那么这个问题其实也就是我们在证明 μ ( n ) = 1 \mu(n) = 1 μ(n)=1 时遇到的那个问题,所以我们知道了这总情况中 μ ( d ) \mu(d) μ(d) 的和是 -1。

  综上所述三种情况里所有 μ ( d ) \mu(d) μ(d) 的和为 -1,然后再加上一个 μ ( 1 ) \mu(1) μ(1),就是 0 了。

  再综上所述,在三种大的情况中,我们都证明了 ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d \mid n}\mu(d) = [n = 1] dnμ(d)=[n=1]。所以这个结论成立。
  证毕!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值