0/1背包问题

动态规划的基本思想:

将一个问题分解为子问题递归求解,且将中间结果保存以避免重复计算。通常用来求最优解,且最优解的局部也是最优的。求解过程产生多个决策序列,下一步总是依赖上一步的结果,自底向上的求解。

动态规划算法可分解成从先到后的4个步骤:

1. 描述一个最优解的结构,寻找子问题,对问题进行划分。

2. 定义状态。往往将和子问题相关的各个变量的一组取值定义为一个状态。某个状态的值就是这个子问题的解(若有k个变量,一般用K维的数组存储各个状态下的解,并可根    据这个数组记录打印求解过程。)。

3. 找出状态转移方程。一般是从一个状态到另一个状态时变量值改变。

4.以“自底向上”的方式计算最优解的值。

5. 从已计算的信息中构建出最优解的路径。(最优解是问题达到最优值的一组解)

其中步骤1~4是动态规划求解问题的基础,如果题目只要求最优解的值,则步骤5可以省略。

背包问题

0/1背包: 有N件物品和一个重量为M的背包。(每种物品均只有一件)第i件物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包: 有N种物品和一个重量为M的背包,每种物品都有无限件可用。第i种物品的重量是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大。

多重背包: 有N种物品和一个重量为M的背包。第i种物品最多有n[i]件可用,每件重量是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大。

0/1背包问题:

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即c[i][v]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值。则其状态转移方程便是:

c[i][m]=max{c[i-1][m], c[i-1][m-w[i]]+p[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入重量为m的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为c[i-1][m];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的重量为m-w[i]的背包中”,此时能获得的最大价值就是c[i-1][m-w[i]]再加上通过放入第i件物品获得的价值p[i]。

测试数据:
10,3
3,4
4,5
5,6



c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.

这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)

[html]  view plain copy
  1. public class Pack01 {  
  2.   
  3.     public int [][] pack(int m,int n,int w[],int p[]){  
  4.         //c[i][v]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值  
  5.         int c[][]= new int[n+1][m+1];  
  6.         for(int i = 0;i<n+1;i++)  
  7.             c[i][0]=0;  
  8.         for(int j = 0;j<m+1;j++)  
  9.             c[0][j]=0;  
  10.         //  
  11.         for(int i = 1;i<n+1;i++){  
  12.             for(int j = 1;j<m+1;j++){  
  13.                 //当物品为i件重量为j时,如果第i件的重量(w[i-1])小于重量j时,c[i][j]为下列两种情况之一:  
  14.                 //(1)物品i不放入背包中,所以c[i][j]为c[i-1][j]的值  
  15.                 //(2)物品i放入背包中,则背包剩余重量为j-w[i-1],所以c[i][j]为c[i-1][j-w[i-1]]的值加上当前物品i的价值  
  16.                 if(w[i-1]<=j){  
  17.                     if(c[i-1][j]<(c[i-1][j-w[i-1]]+p[i-1]))  
  18.                         c[i][j] = c[i-1][j-w[i-1]]+p[i-1];  
  19.                     else  
  20.                         c[i][j] = c[i-1][j];  
  21.                 }else  
  22.                     c[i][j] = c[i-1][j];  
  23.             }  
  24.         }  
  25.         return c;  
  26.     }  
  27.     /**  
  28.      * 逆推法求出最优解  
  29.      * @param c  
  30.      * @param w  
  31.      * @param m  
  32.      * @param n  
  33.      * @return  
  34.      */  
  35.     public int[] printPack(int c[][],int w[],int m,int n){  
  36.           
  37.         int x[] = new int[n];  
  38.         //从最后一个状态记录c[n][m]开始逆推  
  39.         for(int i = n;i>0;i--){  
  40.             //如果c[i][m]大于c[i-1][m],说明c[i][m]这个最优值中包含了w[i-1](注意这里是i-1,因为c数组长度是n+1)  
  41.             if(c[i][m]>c[i-1][m]){  
  42.                 x[i-1] = 1;  
  43.                 m-=w[i-1];  
  44.             }  
  45.         }  
  46.         for(int j = 0;j<n;j++)  
  47.             System.out.println(x[j]);  
  48.         return x;  
  49.     }  
  50.     public static void main(String args[]){  
  51.         int m = 10;  
  52.         int n = 3;  
  53.         int w[]={3,4,5};  
  54.         int p[]={4,5,6};  
  55.         Pack01 pack = new Pack01();  
  56.         int c[][] = pack.pack(m, n, w, p);  
  57.         pack.printPack(c, w, m,n);  
  58.     }  
  59. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值