在将一个神经网络训练好以后,需要将其中的权重、偏值保存下来,从而在下一次使用神经网络时不必训练便可以直接加载参数使用,下面是一个以数据保存和提取为主的程序:
import tensorflow as tf
import numpy as np
W = tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32,name='weight')
b = tf.Variable([[1,2,3]],dtype=tf.float32,name='biases')
init = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
save_path = saver.save(sess,'my_net/save_net.ckpt')
W_1 = tf.Variable(np.arange(6).reshape([2,3]),dtype=tf.float32,name='weights_1')
b_1 = tf.Variable(np.arange(3).reshape([1,3]),dtype=tf.float32,name='biases_1')
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess,'my_net/save_net.ckpt')