图像边缘检测与边缘增强处理——(Roberts、prewitt、sobel)

坚持写下去,虽然简单,但希望可以帮助到别人微笑,有不足之处还望指教吐舌头

目的:对图像采用3种边缘检测算子进行处理,比较处理后的结果,并用边缘增强算法对图像增强。

一、基本原理

1.1图像边缘

   图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。而边缘检测算法则是图像边缘检测问题中经典技术难题之一,它的解决对于我们进行高层次的特征描述、识别和理解等有着重大的影响;又由于边缘检测在许多方面都有着非常重要的使用价值,所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题。

1.2边缘检测的定义

图像边缘是图像最基本的特征,边缘在图像分析中起着重要的用。所谓边缘是指图像局部特征的不连续性。灰度或结构信息的突变称为边缘,例如:灰度级的突变、颜色的突变、纹理结的突变。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。


    一条理想的边缘应该具有如图(a)所示模型的特性。每个像素都处在灰度级跃变的一个垂直的台阶上(例如图形中所示的水平线通过图像的灰度剖面图)。而实际上,诸如图像采集系统的性能、采样频率和获得图像的照明条件等因素的影响,得到的边缘往往是模糊的,边缘被模拟成具有“斜坡面”的剖面,如图(b)所示,在这个模型中不再有细线(宽为一个像素的线条),而是出现了边缘的点包含斜坡中任意点的情况。由此可以看到:模糊的边缘使边缘的“宽度”较大,面清晰的边缘使边缘的宽度较小。图像的边缘有方向的幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。边缘上的这种变化可以用微分算子检测出来,通常用一阶导数或二阶导数来检测边缘,不同的是一阶导数认为最大值对应边缘位置,而二阶导数以过零点对应边缘位置。实际上,对于图像中的任意方向上的边缘都可以进行类似的分析。图像边 缘检测中对任意点的一阶导数可以利用该点梯度的幅度来获得,二阶导数可以用拉普拉斯算子得到。

1.3图像边缘检测算法的研究内容

     图像边缘检测和分析可定义为应用一系列方法获取、校正、增强、变换、检测或压缩可视图像的技术。其目的是提高信息的相对质量,以便提取有用信息。图像边缘检测中的变换属于图像输入-图像输出模式,图像边缘检测是一种超越具体应用的过程,任何为解决某一特殊问题而开发的图像边缘检测新技术或新方法,几乎肯定都能找到其他完全不同的应用领域。图像边缘检测的主要研究内容包括:
(1)图像获得和抽样,其中通过人眼观察的视野获取图像的问题有:最常用的图像获取装置——电视(TV)摄像机问题,对所获得信号进行独立的采样和数字化就可用数字形式表达景物中全部彩色内容;电荷-耦合装置,用作图像传感器,对景物每次扫描一行,或通过平行扫描获得图像;选择正确的分辨力或采样密度,一幅图像实质上是二维空间中的信号,所以适用于信号处理的法则同样适用于图像边缘检测,在放射学中常常需要高分辨力,要求图像至少达到2048像素×2048像素;灰度量化,图像强度也必须进行数字化,通常以256级(按1字节编码)覆盖整个灰度,一般一幅灰度分辨力为8位,空间分辨力为512像素×512像素的图像需0.25兆字节的存贮容量。
(2)图像分割,目的是把一个图像分解成它的构成成分,以便对每一目标进行测量。图像分割是一个十分困难的过程。但其测量结果的质量却极大地依赖于图像分割的质量。有两类不同的图像分割方法。一种方法是假设图像各成分的强度值是均匀的并利用这种均匀性;另一种方法寻找图像成分之间的边界,因而是利用图像的不均匀性。主要有直方图分割,区域生长,梯度法等
(3)边界查索,用于检测图像中线状局部结构,通常是作为图像分割的一个预处理步骤。大多数图像边缘检测技术应用某种形式的梯度算子,可应用对水平方向、垂直方向或对角线方向的梯度敏感的梯度算子,用它们的复合结果可检测任意方向的边界。
(4)图像增强和复原,用于改进图像的质量。不同的增强技术可以用于不同的目的,这取决于应用的类型。如果打算直接观察图像,可以增强对比度。如果是为了进一步对图像作数字处理,可以选择分割(一种突出各图像成分之间的边界和线状结构的运算)。该技术可以是整体的或局部的,也可以在某个频域或者空间域中进行。图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
(5)图像分类(识别),图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
(6)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像边缘检测中也有着广泛而有效的应用。

1.4执行边缘检测的基本步骤

1.为降噪对图像进行平滑处理;
2.边缘点的检测。这是一个局部操作,从一幅图像中提取所有的点,这些点变为边缘点的潜在候选者;
3.边缘定位。这一步的目的是从候选边缘点中选择组合成边缘点集合中的真实成员。

1.5图像梯度及性质

1.6梯度算子

1.6.1Roberts算子

    当对对角线方向的边缘感兴趣时,我们需要一个二维模板。Roberts算子是最早尝试使用具有对角优势的二维模板之一。Roberts算子是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子,他采用对角线方向相邻两象素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感,无法抑制噪声的影响。Roberts边缘算子是一个2x2的模板,采用的是对角方向相邻的两个像素之差。从图像处理的实际效果来看,边缘定位较准,对噪声敏感。
Roberts算子检测方法对具有陡峭的低噪声的图像处理效果较好,但是利用roberts算子提取边缘的结果是边缘比较粗,因此边缘的定位不是很准确。

1.6.2Prewitt算子

     Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。对数字图像f(x,y),Prewitt算子的定义如下:
G(i)=|[f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)]-[f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)]|
G(j)=|[f(i-1,j+1)+f(i,j+1)+f(i+1,j+1)]-[f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)]|

P(i,j)=max[G(i),G(j)]或 P(i,j)=G(i)+G(j)
经典Prewitt算子认为:凡灰度新值大于或等于阈值的像素点都是边缘点。即选择适当的阈值T,若P(i,j)≥T,则(i,j)为边缘点,P(i,j)为边缘图像。这种判定是欠合理的,会造成边缘点的误判,因为许多噪声点的灰度值也很大,而且对于幅值较小的边缘点,其边缘反而丢失了。

1.6.3 Sobel算子

     Sobel 算子有两个,一个是检测水平边沿的;另一个是检测垂直平边沿的。 Sobel算子另一种形式是各向同性Sobel算子,也有两个,一个是检测水平边沿的,另一个是检测垂直平边沿的。各向同性Sobel算子比普通Sobel算子的位置加权系数更为准确,在检测不同方向的边沿时梯度的+-幅度一致。

由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。 在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。Sobel边缘算子的卷积如图所示,图像中的每个像素都用这两个核做卷积。这两个核分别对垂直边缘和水平边缘响应最大,两个卷积的最大值作为该点的输出位。运算结果是一幅边缘幅度图像。


Sobel算子认为邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越大,产生的影响越小。

二、算法步骤

Step1.为降噪对图像进行平滑处理,对图像进行高斯滤波。
Step2.用sobel算子进行边缘检测
Step3.用prewitt算子进行边缘检测
Step4.用roberts算子进行边缘检测
Step5.把原图像用拉普拉斯算子的模板处理
Step6.把A图像归零
Step7.把A的R分量用拉普拉斯算子模板处理
Step8.把A的G分量用拉普拉斯算子模板处理
Step9.把A的B分量用拉普拉斯算子模板处理
Step10.令B=I-A

Step11.显示B图像

三、结果分析


Sobel算子并没有将图像的主体与背景严格地区分开来。Sobel算子是一阶微分算子,是加权平均滤波,且检测的图像边缘可能大于两个像素,和prewitt算子一样对灰度渐变低噪声的图像有较好的检测效果,但是对于混合多复杂噪声的图像,处理效果显得不理想。


Prewitt算子是一阶微分算子,是平均滤波,对灰度渐变低噪声的图像有较好的检测效果。但是,对于混合多复杂噪声的图像,处理效果显得不理想。尽管如此,prewitt模板实现起来仍旧比sobel模板更为简单。


Roberts算子检测方法对具有陡峭的低噪声的图像处理效果较好,但是利用roberts算子提取边缘的结果是边缘比较粗,因此边缘的定位不是很准确。由于不包括平滑,所以对噪声比较敏感。


边缘增强可以提高图像中某一部分的清晰度,使图像特定区域色彩更加鲜明,使画面整体更加清晰。从图中可以看出,经边缘增强后的图像清晰的显示出图中帽子的边界和细节。

四、完整程序

clear all
clc
hg=zeros(3,3);  %设定高斯平滑滤波模板的大小为3*3
delta=0.5;
for x=1:1:3
    for y=1:1:3
        u=x-2;
        v=y-2;
        hg(x,y)=exp(-(u^2+v^2)/(2*pi*delta^2));
    end
end
h=hg/sum(hg(:));
g = imread('C:\Users\Administrator\Desktop\11.jpg');
f=rgb2gray(im2double(g));
subplot(2,3,1);imshow(f);
title('原始图像');
[m,n]=size(f);
ftemp=zeros(m,n);
rowhigh=m-1;
colhigh=n-1;
%%%高斯滤波%%%
for x=2:1:rowhigh-1
    for y=2:1:colhigh-1
        mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
        A=h.*mod;
        ftemp(x,y)=sum(A(:));
    end
end
f=ftemp;
subplot(2,3,2),imshow(f)
title('高斯滤波器后的图像');
%%%%3*3的sobel算子%%%%%%%%
sx=[-1 -2 -1;0 0 0;1 2 1];
sy=[-1 0 1;-2 0 2;-1 0 1];
for x=2:1:rowhigh-1
    for y=2:1:colhigh-1
        mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
        fsx=sx.*mod;
        fsy=sy.*mod;
      ftemp(x,y)=max(abs(sum(fsx(:))),abs(sum(fsy(:))));
    end
end
fs=im2uint8(ftemp);
subplot(2,3,3),imshow(fs)
title('用sobel边缘算子检测的图像');
% %%%利用prewitt算子进行边缘检测%%%
 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sx=[-1 -1 -1;0 0 0;1 1 1];
 sy=[1 0 -1;1 0 -1;1 0 -1];%这里是prewitt算子

for x=2:1:rowhigh-1
 for y=2:1:colhigh-1
 mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];
 fsx=sx.*mod;
 fsy=sy.*mod;
 ftemp(x,y)=sqrt((sum(fsx(:)))^2+(sum(fsy(:)))^2);
 end
 end
 fr=im2uint8(ftemp);
 subplot(2,3,4),imshow(fr)
 title('用prewitt算子边缘检测的图像');
 % %%%利用roberts算子进行边缘检测%%%
 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 sx=[-1 0;0 1];
sy=[0 -1;1 0];
for x=2:1:rowhigh-1
    for y=2:1:colhigh-1
        mod=[f(x-1,y-1) f(x-1,y);f(x,y-1) f(x,y)];
        fsx=sx.*mod;
        fsy=sy.*mod;
      ftemp(x,y)=max(abs(sum(fsx(:))),abs(sum(fsy(:))));
    end
end
ft=im2uint8(ftemp);
subplot(2,3,6),imshow(ft)
title('用roberts边缘检测的图像');
%拉普拉斯算子锐化图像,用二阶微分
%四邻接g(x,y)=[f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)]-4f(x,y)
I=im2double(g);
[m,n,c]=size(I);
A=zeros(m,n,c);
%分别处理R、G、B
%先对R进行处理
for i=2:m-1
    for j=2:n-1
        A(i,j,1)=I(i+1,j,1)+I(i-1,j,1)+I(i,j+1,1)+I(i,j-1,1)-4*I(i,j,1);
    end
end

%再对G进行处理
for i=2:m-1
    for j=2:n-1
        A(i,j,2)=I(i+1,j,2)+I(i-1,j,2)+I(i,j+1,2)+I(i,j-1,2)-4*I(i,j,2);
    end
end

%最后对B进行处理
for i=2:m-1
    for j=2:n-1
        A(i,j,3)=I(i+1,j,3)+I(i-1,j,3)+I(i,j+1,3)+I(i,j-1,3)-4*I(i,j,3);
    end
end
B=I-A;
Figure
imwrite(B,’11.jpg’,’jpg’)
 subplot(121)
 imshow('C:\Users\Administrator\Desktop\11.jpg');title('原始图像');
 subplot(122)
 imshow('11.jpg');title('边缘增强图像')

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页