DS 0927(第五章 树)

def: 从一个根节点出发,通过边的连接到分支节点,再通过边的连接到没有后继的叶子节点

空树:结点数为0的树
非空数:

  • 有且仅有一个根节点
  • 没有后继节的结点被称为”叶子结点“
  • 有后继的结点被称为”分支结点“
  • 除了根节点外,每个结点有且仅有一个前驱
  • 每个根节点可以由0个或多个后继

在这里插入图片描述

DEF: 树是n(n大于等于0)个结点的有限集合,n=0时,是空树,在任意一颗非空树中应满足

  • 有且仅有一个根节点
  • 当n>1时,其余结点可分为m(>0)个互不相交的有限集合,其中每个集合本身又是一个树,并且称为根节点的子树

树是一种递归定义的数据结构

相关术语

1.结点之间的关系描述:

祖先结点:从某个结点出发一直往上到根节点,经过的所有结点
子孙结点:从一个结点出发他的分支都是他的子孙结点
双亲结点(父节点):一个结点的直接前驱就是他的父节点
孩子结点:一个结点的直接后继
兄弟结点:由同一个结点分支出来的
堂兄弟结点:同一层,不同分支

  1. 结点之间的路径:只能从上往下且是单向的,即树里的边是有向边
  2. 路径的长度:经过了几条边

结点,树的属性描述

  • 结点的层次(深度):从上往下数,大部分情况从1开始
  • 结点的高度:
  • 树的高度(深度)
  • 结点的度:结点有多少个分支,度>0是非叶子节点,度=0的是叶子结点
  • **树的多:**各节点的度的最大值

有序树,无序树

  • 有序树:从逻辑上看,树中结点的子树从左至右是有次序的,不能互换
  • 无序树:从逻辑上看,树中结点的子树,从左至右是无次序的,可以呼唤

森林:
m棵互不相交的树的集合(m可为0,空森林)

树的常见性质

  • 结点数=总度数+1
  • 树的度-----各结点的最大值:至少有一个结点度=m,一定是非空树,至少有m+1个结点
  • m叉树:允许所有结点的度都<m,且可以是空树
  • 度为m的树第i层之多有M的i-1次方个结点
  • 在这里插入图片描述
    每一层的最大结点数量之和
  • List item
  • 具有n个结点的m叉树的最小高度为:
    1。高度最小的情况----所有结点都有m个孩子
    在这里插入图片描述
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页