vim编辑器替换以及全局替换 语法: [addr]s/源字符串/目的字符串/[option][addr]表示检索范围 “1,n”: 表示从第1行到n行 “%”: 表示整个文件,同"1," ".," ".," ".," :表示从当前行到文件尾[addr]省略时表示当前行s: 表示替换操作,为substitute的缩写[option]: 表示操作类型,如:g: global,表示全局替换c: confirm,表示进行确认p: 表示替代结果逐行显示(Ctrl + L恢复屏幕)i: ignore,不区分大小写[
Failed calling sys.__interactivehook__ 错误的解决 启动python,有些错误,如下。PS D:…> pythonPython 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32Type “help”, “copyright”, “credits” or “license” for more information.Failed calling sys.interactivehookTraceback (most recen
利用pip和清华源安装tensorflow的GPU版本和CPU版本(或其他模块) 安装tensorflow时,如果使用直接安装速度相对较慢,采取清华大学的镜像会提高速度。GPU版本:pip install tensorflow-gpu1.8 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install tensorflow1.8 -i https://pypi.tuna.tsinghua.edu.cn/simple...
ModuleNotFoundError: No module named pip.__internal , pip 无法下载软件 解决办法 python -m ensurepippython -m pip install --upgrade pip如果更新不成功,加上–user,就可以了。python -m ensurepippython -m pip install --upgrade pip --user
one-hot编码 one-hot机器学习算法无法直接用于数据分类。数据分类必须转换为数字才能进一步进行。在本教程中,你将发现如何将输入或输出的序列数据转换为一种热编码,以便于你在Python中深度学习的序列分类问题中使用。看完本教程后,你将会了解:· 1.什么是整数编码和One-Hot编码,以及为什么它们在机器学习中是必需的。· 2.如何在Python中手工计算一个整数编码和One-Hot编码。· 3.如何使用scikit-learn和Keras库来自动对Python中的序列数据进行编码。本教程分为
算法链接 1.四种基本的数据结构:https://blog.csdn.net/xfyangle/article/details/67031686https://blog.csdn.net/iteslafan/article/details/1032156482.排序:https://blog.csdn.net/fengshenju2018/article/details/1065266083.链表;https://blog.csdn.net/Shuffle_Ts/article/details/95055
机器学习链接 1.机器学习算法岗常见笔试面试题整理:https://blog.csdn.net/xxn_723911/article/details/802644702.机器学习SVM算法常见面试题(一):https://blog.csdn.net/mengjizhiyou/article/details/1055099473.机器学习与算法常见面试题总结(持续更新):https://blog.csdn.net/a18612039484/article/details/100590354...
深度学习-RNN LSTM BI-LSTM RNN 循环神经网络RNN主要处理有时序关系的变长序列问题。每个神经元在每一时刻都一个特殊的hidden状态h(t),由当前节点的输入I(t)和上一时刻t-1隐藏状态h(t-1)加权求和后经过一个非线性激活函数得到,具体表示成公式如下:每个神经元t时刻隐状态参数Whh决定了当前神经元以多少比例接受之前所有时刻[0,t-1]的输入信息阻碍RNN发展的两个严重问题是:梯度爆炸 和 梯度消失、RNN的对隐状态h(0)进行反向传播:利用RNN时序上的依赖关系对上式进行展开,得到(注意,下式成立的前
深度学习-前向传播和反向传播 在求出前向传播和反向传播前要先确定参数和输入输出符号的表达形式最普通的DNN就可以看做是一个多层感知机MLP,感知机的输出其实就是对输入的加权求和:,再经过一个非线性激活函数首先来定义权值矩阵W,按照下图规则,表示的是第3层第2个神经元和第2层第4个神经元之间连线(连线就代表权重,可以看成是的省略写法)。那么为什么不写成呢,形式上是允许的,但是如果这样写的话,第3层神经元的输入就要通过来计算,而前者只需要计算,省略了矩阵转置的额外工作量。偏置项b的定义也是类似,表示第2层第3个神经元的偏置。再定
机器学习-决策树 上:https://blog.csdn.net/HerosOfEarth/article/details/52347820下:https://blog.csdn.net/HerosOfEarth/article/details/52425952
机器学习-AdaBoost算法 简介Adaboost算法是一种提升方法,将多个弱分类器,组合成强分类器。AdaBoost,是英文”Adaptive Boosting“(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个弱分类器分错的样本的权值(样本对应的权值)会得到加强,权值更新后的样本再次被用来训练下一个新的弱分类器。在每轮训练中,用总体(样本总体)训练新的弱分类器,产生新的样本权值、该弱分类器的话语权,一直迭代直到达到预定的错误率或达到指定的最大迭代次数。总体—
机器学习-朴素贝叶斯算法 简介NaïveBayes算法,又叫朴素贝叶斯算法,朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。基本思想(1)病人分类的例子某个医院早上收了六个门诊病人,如下表:症状 职业 疾病——————————————————打喷嚏 护士 感冒打喷嚏 农夫 过敏头痛 建筑工人 脑震荡头痛 建筑工人 感冒打喷嚏 教师 感冒头
机器学习-支持向量机(SVM)详解 原文链接:https://blog.csdn.net/b285795298/article/details/81977271?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineL...
机器学习-K-Means算法 简介又叫K-均值算法,是非监督学习中的聚类算法。基本思想k-means算法比较简单。在k-means算法中,用cluster来表示簇;容易证明k-means算法收敛等同于所有质心不再发生变化。基本的k-means算法流程如下:选取k个初始质心(作为初始cluster,每个初始cluster只包含一个点); repeat: 对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster; 重新计算k个cluster对应的质心(质心是clust
机器学习-KNN(最近邻)详解 K-近邻算法原理K最近邻(kNN,k-NearestNeighbor)分类算法,见名思意:找到最近的k个邻居(样本),在前k个样本中选择频率最高的类别作为预测类别,什么?怎么那么拗口,没图说个JB,下面举个例子,图解一下大家就会显而易见了,如下图:我们的目的是要预测某个学生在数学课上的成绩。。。先来说明几个基本概念:图中每个点代表一个样本(在这里是指一个学生),横纵坐标代表了特征(到课率,作业质量),不同的形状代表了类别(即:红色代表A(优秀),绿色代表D(不及格))。我们现在看(10,20)这个.
深度学习-Ultra-Light-Fast-Generic-Face-Detector-1MB网络结构详解 近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。短短几天时间,已经在Github上标星2.1K,398个Fork(Github地址:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB)据Linzaer介绍,该模型设计是针对边缘计算设备或低算力设备(如用ARM推理)设计的
机器学习-多元线性回归(multiple linear regression) 先甩几个典型的线性回归的模型,帮助大家捡起那些年被忘记的数学。● 单变量线性回归: h(x)=theta0 + theta1* x 1● 多变量线性回归: h(x)=theta0 + theta1* x 1 + theta2* x 2 + theta3* x 3● 多项式回归: h(x)=theta0 + theta1* x 1 + theta2* (x2^2) + theta3* (x3^3)多项式回归始终还是线性回归,你可以令x2=x22,x3=x33,简单的数据处理一下就好了,这