leetcode 279. Perfect Squares

题目:Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.

Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.

算法思路1(BFS和图的最短路径):n从1开始构建一张有向图,每个结点的num指向它的相邻结点(相邻结点的值为num减去一个平方数)。广度搜索将要用到队列,用一个数组标记访问过的结点以防止重复搜索,最先到达终点所经过的结点数即为最短路径,也是所求答案。

参考代码:

 public int numSquares(int n) {
       Queue<Pair> queue = new LinkedList<Pair>();
        boolean[] visited = new boolean[n+1];
        for(int i=0;i<n+1;i++)
        	visited[i]=false;
        queue.add(new Pair(n,0));
        visited[n]= true;
        while(!queue.isEmpty()){
        	Pair pair = queue.remove();
        	for(int i=1;;i++){
        		int num = pair.num-i*i;
        		if(num<0)
        			break;
        		if(num==0){
        			return pair.step+1;
        		}
        		if(num>0&&!visited[num]){
        			visited[num]= true;
        			queue.add(new Pair(num,pair.step+1));
        		}
        	}
        	
        }
    	return 0;
    }
}

class Pair{
	int num;
	int step;
	public Pair(int num,int step){
		this.num = num;
		this.step = step;
	}
}

算法思路2(DP):动态规划是自下而上递推获得答案,一般需要一个记忆数组memo。有2层循环,外层循环 i 从2到n,用min = i 初始化最短路径值,内层循环用来获得 i 的最短路径 ,从仅次于 i 的最大的平方数开始尝试,当该最大平方数恰好为i,则一步就可以到达,最短路径为1,否则的话,计算剩余部分的最短路径值+1再与min比较,取较小值更新min,最后保存i的最短路径。

参考代码:

//leetcode 279. Perfect Squares
	public static int numsSquares(int n){
		int[] memo = new int[n+1];	
		memo[1] = 1;
		for (int i = 2; i <= n; i++) {
			int min = i;
			for(int j=(int)Math.sqrt(i);j>=1;j--){
				int temp = i - j*j;
				if(temp == 0){
					min = 1;
				}else{
					min = Math.min(min, memo[temp]+1);
				}
			}
			memo[i] = min;
		}
		return memo[n];		
	}

没有更多推荐了,返回首页