【机器学习】机器学习的基本分类-监督学习-Lasso 回归(Least Absolute Shrinkage and Selection Operator)

Lasso 回归是一种线性回归方法,通过引入 L_1​ 正则化(绝对值惩罚项)约束回归系数,既能解决多重共线性问题,又具有特征选择能力。


1. Lasso 回归的目标函数

Lasso 的目标是最小化以下损失函数:

\text{Lasso Loss} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^p |\beta_j|

其中:

  • \sum_{i=1}^n (y_i - \hat{y}_i)^2 是残差平方和。
  • \sum_{j=1}^p |\beta_j|L_1 正则化项。
  • λ > 0 是正则化强度的超参数,控制对回归系数的惩罚程度。

2. Lasso 的特点

  1. 特征选择

    • L_1​ 正则化能够将一些不重要的特征系数缩为 0,从而实现特征选择。
    • 这是 Lasso 和岭回归的最大区别,岭回归仅会缩小系数,但不会完全归零。
  2. 对多重共线性的处理

    • 当特征之间存在较强相关性时,Lasso 更倾向于保留一个特征,压缩其他特征的系数为 0,从而简化模型。

3. 数学解读

目标函数

Lasso 的优化目标:

\min_\beta \left\{ \| y - X\beta \|_2^2 + \lambda \| \beta \|_1 \right\}

  • \| y - X\beta \|_2^2​:拟合误差(最小化残差平方和)。
  • \| \beta \|_1 = \sum_{j=1}^p |\beta_j|:正则化项,控制模型复杂度。
几何解释
  • L_1 正则化将优化问题的约束区域限制在菱形L_1-范数球)内。
  • 菱形的顶点位于坐标轴上,因此 Lasso 具有将某些系数缩为 0 的特性。

4. 优缺点

优点
  1. 特征选择能力:可以将不重要的特征系数缩为 0,直接实现特征筛选。
  2. 降低模型复杂度:减少模型的变量数量,从而提高模型的可解释性。
  3. 解决多重共线性问题:对共线特征进行选择性保留,避免过拟合。
缺点
  1. 可能偏差较大:Lasso 会对所有系数施加惩罚,可能导致模型在某些情况下表现不佳。
  2. 不适合高维数据:当样本数小于特征数时,Lasso 的选择结果可能不稳定。
  3. 对正则化参数敏感:λ 的选择对模型性能影响较大。

5. Lasso 回归的实现

以下是 Python 中使用 scikit-learn 的实现示例:

from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from sklearn.metrics import mean_squared_error

# 生成数据
X, y = make_regression(n_samples=100, n_features=10, noise=10, random_state=42)

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建 Lasso 模型
lasso = Lasso(alpha=0.1)  # alpha 即 λ
lasso.fit(X_train, y_train)

# 预测
y_pred = lasso.predict(X_test)

# 评价
print("MSE:", mean_squared_error(y_test, y_pred))
print("回归系数:", lasso.coef_)

输出结果

MSE: 104.93221988874537
回归系数: [18.96025415 54.8553183   3.43132401 63.6082866  92.65442432 69.48209529
 84.42789762  8.49332936  2.90087787 71.0628166 ]

6. 正则化参数 λ 的调优

Lasso 中的超参数 λ(在 scikit-learn 中是 alpha)需要通过交叉验证选择。可以使用 LassoCV 进行自动调优:

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from sklearn.linear_model import LassoCV


# 生成数据
X, y = make_regression(n_samples=100, n_features=10, noise=10, random_state=42)

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 自动选择最佳 λ
lasso_cv = LassoCV(alphas=[0.1, 1.0, 10.0], cv=5)  # 5 折交叉验证
lasso_cv.fit(X_train, y_train)

# 最佳正则化参数
print("最佳 λ:", lasso_cv.alpha_)

# 使用最佳参数的回归系数
print("回归系数:", lasso_cv.coef_)

输出结果

最佳 λ: 0.1
回归系数: [18.96025415 54.8553183   3.43132401 63.6082866  92.65442432 69.48209529
 84.42789762  8.49332936  2.90087787 71.0628166 ]

7. Lasso 与岭回归的比较

方法正则化类型特点应用场景
岭回归L_2​ 范数收缩系数,解决多重共线性问题特征数量较多,但不需要特征选择时使用
Lasso 回归L_1 范数稀疏化系数,具有特征选择能力需要减少特征数量或增强模型解释性时
ElasticNetL_1 + L_2​ 范数综合岭回归和 Lasso 的优点高维数据特征筛选且有多重共线性时

8. 应用场景

  1. 基因数据分析:处理高维稀疏数据,选择关键基因。
  2. 金融数据建模:选择重要指标,如宏观经济特征对市场走势的影响。
  3. 图像处理:降维和稀疏特征提取。

 Lasso 回归是一种强大且解释性好的线性模型,通过 L_1 正则化实现特征选择和降维,适合高维但稀疏的数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值