【Unity】贝塞尔曲线关于点、长度、切线计算在 Unity中的C#实现

版权声明: https://blog.csdn.net/IT_yanghui/article/details/80688115

基本思路是满足几个基本需求: 

编辑时: 
① 随意增减、插入、删除路点,只要路点数量大于1,绘制曲线,曲线必定经过路点。 
② 调整路点的Forward方向,控制曲线的入线切线方向、出线切线方向。这样可以通过旋转直接调整曲线形状。 
③ 控制Forward方向的基础上,增添描述切线“强度”的变量,来进一步控制曲线的形状。 
④ 可以指定每段曲线的逻辑长度,程序提供一个曲线近似长度帮助确定逻辑长度。 
⑤ 导出曲线的数据。

运行时,可以根据数据: 
⑥ 对路点进行从0开始的编号,使用0.01~0.99来描述在某段曲线上的位置(逻辑上的),然后转化成为实际的坐标。 

⑦ 可以获得在曲线上任意一点的切线方向。

正文


从路点、路点forward到三阶贝塞尔曲线的四个点

关于贝塞尔曲线,可见下文 
贝塞尔曲线 
贝塞尔曲线在线演示

每两个路点作为三阶贝塞尔曲线的起点(第0个点P0)和终点(第3个点P3)。 
这里写图片描述

起点路点的Forward方向乘以“强度”的变量,再加上起点坐标,作为第1个点P1。 
起点路点的Forward反方向乘以“强度”的变量,再加上起点坐标,作为第2个点P2。 
这里写图片描述 
得到 p0~p4这四个点之后,即可使用三阶贝塞尔曲线的相关公式了

绘制贝塞尔曲线,图中红色线条部分 
这里写图片描述


三阶贝塞尔曲线线上某点坐标(Unity & C#)

三阶贝塞尔曲线公式(来自百度百科) 
这里写图片描述

形参中的 t, p0, p1, p2, p3 分别对应公式中的 t 以及 p0~p3

    public Vector3 BezierPoint(float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3)
    {
        float u = 1 - t;
        float tt = t * t;
        float uu = u * u;
        float uuu = uu * u;
        float ttt = tt * t;

        Vector3 p = uuu * p0;
        p += 3 * uu * t * p1;
        p += 3 * u * tt * p2;
        p += ttt * p3;

        return p;
    }

三阶贝塞尔曲线的近似长度(Unity & C#)

计算长度的思路: 
在贝塞尔曲线上取n个点,计算点之间的直线长度,进行加和,从而取得一个曲线的近似长度。取点越多这个长度越趋向于精确。

形参中的p0, p1, p2, p3 分别对应公式中的 p0~p3。pointCount代表取点个数,默认30。

    public float BezierLength(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, int pointCount = 30)
    {
        if (pointCount < 2)
        {
            return 0;
        }

        //取点 默认 30个
        float length = 0.0f;
        Vector3 lastPoint = BezierPoint(0.0f / (float)pointCount, p0, p1, p2, p3);
        for (int i = 1; i <= pointCount; i++)
        {
            Vector3 point = BezierPoint((float)i/(float)pointCount, p0, p1, p2, p3);
            length += Vector3.Distance(point, lastPoint);
            lastPoint = point;
        }
        return length;
    }

三阶贝塞尔曲线线上某点的切线(Unity & C#)

在已知贝塞尔曲线表达式的情况下,想要知道某点的切线,对曲线求导。 
可得: 
这里写图片描述

整理后可得 
这里写图片描述

整体公式构成只有p0~p3 以及 t 和 (1-t),为了表达式更直接,不进行进一步的整理。 
所以得到下面的代码

形参中的 t, p0, p1, p2, p3 分别对应公式中的 t 以及 p0~p3

    public Vector3 BezierTangent(float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3)
    {
        float u = 1 - t;
        float uu = u * u;
        float tu = t * u;
        float tt = t * t;

        Vector3 P = p0 * 3 * uu * (-1.0f);
        P += p1 * 3 * (uu - 2 * tu);
        P += p2 * 3 * (2 * tu - tt);
        P += p3 * 3 * tt;        

        //返回单位向量
        return P.normalized;
    }

主要参照: 
Unity游戏中使用贝塞尔曲线 
求二次、三次贝塞尔曲线的某个时间的位置及切线方向

此篇只是为了学习和知识分享!(如有侵权,联系删除。谢谢!)

(支持原创)来自喵喵丸的博客 (http://blog.csdn.net/u011643833/article/details/78540554




阅读更多

没有更多推荐了,返回首页