小小酥kkk
码龄6年
关注
提问 私信
  • 博客:35,099
    35,099
    总访问量
  • 24
    原创
  • 44,748
    排名
  • 673
    粉丝
  • 141
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2019-01-30
博客简介:

ITdaka的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    359
    当月
    19
个人成就
  • 获得425次点赞
  • 内容获得137次评论
  • 获得511次收藏
  • 代码片获得646次分享
创作历程
  • 22篇
    2024年
  • 2篇
    2022年
成就勋章
TA的专栏
  • 读
兴趣领域 设置
  • Python
    pythondjango
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

如何在YoloV8中添加注意力机制(两种方式)

yolov8添加注意力机制的方法
原创
发布博客 2024.09.11 ·
2026 阅读 ·
24 点赞 ·
2 评论 ·
49 收藏

Yolo-World在基于自己的数据集训练后zero-shot能力显著下降甚至消失的问题

关于yolo-world的零样本检测能力问题
原创
发布博客 2024.07.30 ·
1731 阅读 ·
11 点赞 ·
23 评论 ·
19 收藏

Yolo-World在自定义数据集上进行闭集词汇训练推理过程(二)——使用ultralytics库训练模型

基于ultralytics库本地训练和推理yolo-world的方法
原创
发布博客 2024.07.22 ·
1791 阅读 ·
25 点赞 ·
5 评论 ·
23 收藏

Yolo-World中的“推理阶段的优化”等问题记录

在阅读完yolo-world论文之后还存在一些问题,比如推理阶段的优化,prompt-then-detect范式,在线词汇表训练,离线词汇表推理,零样本评估,查阅相关资料后做此记录。
原创
发布博客 2024.07.21 ·
955 阅读 ·
18 点赞 ·
0 评论 ·
19 收藏

Yolo-World网络模型结构及原理分析(三)——RepVL-PAN

RepVL-PAN(Re-parameterizable Vision-Language Path Aggregation Network)是YOLO-World中的一个核心网络结构,它通过融合视觉信息和语言信息来提升目标检测的性能。
原创
发布博客 2024.07.20 ·
964 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

Yolo-World网络模型结构及原理分析(二)——文本编码器

文本编码器部分主要负责将文本信息转换为可用于模型进一步处理的嵌入表示
原创
发布博客 2024.07.20 ·
1452 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

Yolo-World网络模型结构及原理分析(一)——YOLO检测器

本文主要对开放词汇检测模型yolo-world的模型结构进行分析,研究模型具体的工作流程
原创
发布博客 2024.07.18 ·
2381 阅读 ·
29 点赞 ·
0 评论 ·
36 收藏

Yolo-World训练过程中使用wandb进行可视化

yolo-world使用wandb实现训练可视化
原创
发布博客 2024.06.13 ·
390 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

Yolo-World在自定义数据集上进行闭集词汇训练过程(一)——使用源码训练模型

基于自定义数据集如何训练yolo-world模型
原创
发布博客 2024.05.29 ·
3532 阅读 ·
37 点赞 ·
55 评论 ·
50 收藏

本地及云服务器上部署yoloworld的过程中遇到一些问题整理记录

在本地部署yoloworld项目时遇到的一些问题的记录,供大家参考!
原创
发布博客 2024.05.14 ·
3682 阅读 ·
36 点赞 ·
52 评论 ·
52 收藏

Yolo-Word论文精读

YOLO-World介绍:为了克服这一限制,作者提出了YOLO-World,这是一种新的方法,它通过视觉-语言建模和在大规模数据集上的预训练,增强了YOLO的开放词汇(open-vocabulary)检测能力。图表中圆圈的大小代表了模型的大小。尽管一些方法通过区域-文本匹配统一了检测数据集和图像-文本数据集,并通过大规模图像-文本对进行预训练,从而取得了有希望的性能和泛化能力,但这些方法通常使用重型检测器,如ATSS或DINO,这些检测器以Swin-L作为骨干网络,导致计算需求高和部署挑战。
原创
发布博客 2024.04.30 ·
965 阅读 ·
27 点赞 ·
0 评论 ·
24 收藏

yolo--v5相关内容介绍

Bottleneck 结构通常与残差连接一起使用,但在 YOLOv5 中,残差连接的使用有所变化,Backbone 中的 Bottleneck 默认使用残差连接,而在 Head 中的 Bottleneck 不使用残差连接。CSP 结构的核心思想是将网络的层级结构进行分割和重组,以提高特征的流通性和网络的训练效率。在 YOLOv5 的早期版本中,Focus 模块被用作网络的第一层,直接处理输入图像,但在后续版本中,它被移除,取而代之的是标准的卷积层。这使得网络能够提取更细粒度的特征,同时保持稳定的训练过程。
原创
发布博客 2024.04.14 ·
2566 阅读 ·
18 点赞 ·
0 评论 ·
31 收藏

fasterRCNN论文精读及问题整理

He等人[18]通过其他与Faster R-CNN正交的改进,获得了单个模型在COCO 2015测试-验证集上的55.7%/34.9%的结果,以及集成结果的59.0%/37.4%,赢得了COCO 2015目标检测竞赛的第一名。在重新缩放的图像上,无论是ZF(Zeiler and Fergus)模型还是VGG模型,在最后一个卷积层上的总步长为16像素,这意味着在典型的PASCAL图像(约500×375像素)上,步长约为10像素。图的左侧展示了RPN的示意图,它作为一个小型网络,作用在较大的卷积特征图上。
原创
发布博客 2024.04.14 ·
898 阅读 ·
24 点赞 ·
0 评论 ·
13 收藏

fast-RCNN论文精读及问题整理

位置损失用于优化预测的边界框位置。在Fast R-CNN的训练中,使用随机梯度下降(SGD)以分层的方式采样小批量数据,首先采样N个图像,然后从每个图像中采样R/N个RoI。与R-CNN相比,Fast R-CNN达到了66%的mAP,而R-CNN的mAP为62%。传统的目标检测方法,如R-CNN和SPPnet,在训练过程中需要将提取的特征写入磁盘,以便于后续的分类和回归任务。Fast R-CNN通过在训练过程中共享计算和内存,避免了这种磁盘I/O操作,从而减少了对存储的需求,并提高了训练效率。
原创
发布博客 2024.04.11 ·
1111 阅读 ·
20 点赞 ·
0 评论 ·
21 收藏

yolo--v4论文精读及问题整理

目标检测的挑战:摘要提到,目标检测领域存在大量声称能提高卷积神经网络(CNN)准确性的特性。然而,这些特性需要在大型数据集上进行实际测试,并且需要理论上的证明来支持测试结果。通用特性的假设:作者假设了一些通用特性,这些特性适用于大多数模型、任务和数据集。这些特性包括加权残差连接(WRC)、跨阶段部分连接(CSP)、跨小批量归一化(CmBN)、自对抗训练(SAT)和Mish激活函数等。新特性的使用:
原创
发布博客 2024.03.27 ·
685 阅读 ·
16 点赞 ·
0 评论 ·
9 收藏

yolo--v3相对于yolo--v2有哪些改进?

骨干网络的改进:锚点框的优化:多尺度预测:空间金字塔池化的改进:损失函数的调整:训练策略的改进:网络结构的优化:性能提升:
原创
发布博客 2024.03.27 ·
421 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

yolo--v3论文精读及核心问题整理

例如,在COCO数据集上,每个尺度上预测3个边界框,因此张量的形状为N × N × [3 × (4 + 1 + 80)],其中4表示边界框偏移量,1表示目标性预测,80表示80个类别预测。YOLOv3是YOLO系列的第三个版本,它在保持前一个版本优点的基础上,通过细节上的优化实现了更好的性能。Darknet-53结合了3×3和1×1的卷积层,并引入了残差连接(shortcut connections),这些连接允许网络中的梯度直接流过一些层,从而缓解了深度网络训练中的梯度消失问题。
原创
发布博客 2024.03.27 ·
773 阅读 ·
23 点赞 ·
0 评论 ·
6 收藏

YOLO-v2相对于YOLO v1做了哪些改进?

这些改进使得YOLOv2在速度、准确性和召回率方面都超越了YOLOv1,使其成为了一个更加强大和灵活的实时对象检测系统。
原创
发布博客 2024.03.21 ·
354 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

YOLO--v2论文精读

YOLO–v2摘要:论文的摘要部分介绍了YOLO9000,这是一个最新的实时对象检测系统,能够检测超过9000个对象类别。以下是对摘要部分的详细解释:YOLO9000的介绍:YOLO检测方法的改进:多尺度训练方法:对象检测与分类的联合训练:验证方法:总结:摘要部分强调了YOLO9000的主要贡献和特点,即其实时检测能力、处理大量对象类别的能力,以及通过联合训练提高检测和分类性能的能力。这些特点使得YOLO9000在对象检测领域具有重要的应用潜力。1.introduction对象检测的重要性:现有检测方法
原创
发布博客 2024.03.21 ·
837 阅读 ·
23 点赞 ·
0 评论 ·
17 收藏

yolo---v1论文精读

为了使模型更关注于包含对象的网格单元,引入了两个参数λcoord和λnoobj来调整损失,其中λcoord用于增加边界框坐标预测的权重,λnoobj用于减少不包含对象的网格单元中置信度预测的权重。训练和测试参数的一致性:尽管Fast YOLO的网络结构更简单,但它在训练和测试过程中使用的参数与原始的YOLO模型完全相同。最终的预测是一个7×7×30的张量。Fast YOLO的设计理念:Fast YOLO是YOLO的一个快速版本,它的设计目标是在保持较高检测精度的同时,大幅度提高目标检测的速度。
原创
发布博客 2024.03.19 ·
824 阅读 ·
20 点赞 ·
0 评论 ·
24 收藏
加载更多