count[i][j]:
1. j>=v[i],count[i][j]=f[j]-count[i][j-v[i]]。
用能装满j的所有方案,减去用了第i个物品的方案(即不用第i个物品装满j-v[i]的所有方案)
2. j< v[i],count[i][j]=f[j].
j< v[i],能装满j的所有方案一定都没有用第i个物品。
tips:取模的时候注意减成负数了的情况。。
#include <cstdio>
#include <cstring>
#define N 2005
int n,m,v[N],f[N],c[N];
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int main(){
// freopen("a.in","r",stdin);
n=read();m=read();
for(int i=1;i<=n;++i) v[i]=read();
f[0]=1;
for(int i=1;i<=n;++i)
for(int j=m;j>=v[i];--j)
f[j]=(f[j]+f[j-v[i]])%10;
for(int i=1;i<=n;++i){
memset(c,0,sizeof(c));c[0]=1;
for(int j=1;j<=m;++j)
c[j]= j>=v[i]?f[j]-c[j-v[i]]:f[j],c[j]=(c[j]+10)%10;
for(int j=1;j<=m;++j) printf("%d",c[j]);puts("");
}
return 0;
}
背包问题求解算法

本文介绍了一种解决背包问题的方法,通过动态规划实现物品的选择,以达到最大化的装载效果。核心在于更新状态数组来记录不同容量下所能达到的最大价值。
821

被折叠的 条评论
为什么被折叠?



