无涯学徒1998
码龄4年
关注
提问 私信
  • 博客:36,626
    社区:1
    问答:679
    37,306
    总访问量
  • 52
    原创
  • 31,037
    排名
  • 353
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2021-02-03
博客简介:

Inface0443的博客

查看详细资料
  • 原力等级
    当前等级
    4
    当前总分
    550
    当月
    31
个人成就
  • 获得559次点赞
  • 内容获得8次评论
  • 获得505次收藏
  • 代码片获得106次分享
创作历程
  • 9篇
    2025年
  • 35篇
    2024年
  • 1篇
    2022年
  • 7篇
    2021年
成就勋章
兴趣领域 设置
  • Python
    python
  • 编程语言
    c#
  • 数据结构与算法
    算法
  • AIGC
    gpt
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

N2学习打卡

安装torchtext可能出现找不到指定程序的报错,需要降低版本,可能是cuda版本不适配导致。
原创
发布博客 2025.03.20 ·
348 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

N1学习打卡笔记

One-Hot编码在NLP中的作用总结:基础词表示将离散型特征(单词、标签等)转换为二进制向量例:"apple"的one-hot编码可能为[0,0,1,0,…,0],维度等于词表大小核心功能消除语义歧义:确保每个词有唯一数值标识兼容传统模型:适配SVM、逻辑回归等无法直接处理文本的算法稀疏性控制:虽会产生高维稀疏矩阵,但可配合TF-IDF等加权策略使用典型应用场景词袋模型(Bag-of-Words)的基础构建文本分类任务的输入特征表示。
原创
发布博客 2025.03.11 ·
981 阅读 ·
11 点赞 ·
0 评论 ·
5 收藏

Y3学习打卡

熟悉了YOLOv5s模型的配置信息将YOLOv5s模型中第4层和第6层的C3模块重复次数减少,具体影响分析如下:1. 修改内容对比原始配置原来的第4层:[-1, 6, C3, [256]]原来的第6层:[-1, 9, C3, [512]]修改后配置修改后的第4层:[-1, 3, C3, [256]]修改后的第6层:[-1, 6, C3, [512]]2. 对模型性能的影响(1) 模型参数量与计算量参数量(Parameters)
原创
发布博客 2025.03.04 ·
912 阅读 ·
30 点赞 ·
0 评论 ·
10 收藏

Y2学习打卡

学会了利用yolov5训练指定数据。
原创
发布博客 2025.02.20 ·
308 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

Y1打卡学习笔记

学习了如何使用YOLOv5进行图像检测和视频目标检测YOLOv5 的工作原理单阶段检测:YOLOv5 是一种单阶段目标检测器。与两阶段的检测器(如 R-CNN 系列)不同,YOLOv5 在单个网络中同时完成目标的定位和分类,大大提高了目标检测的速度。骨干网络(Backbone):YOLOv5 使用了一个高效的骨干网络来提取图像特征。具体来说,它采用了 CSPDarknet53(Cross Stage Partial Network)作为主要的特征提取网络。
原创
发布博客 2025.01.23 ·
231 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

R6学习打卡

训练循环size = len(dataloader.dataset) # 训练集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签# 计算预测误差pred = model(X) # 网络输出。
原创
发布博客 2025.01.22 ·
1012 阅读 ·
20 点赞 ·
0 评论 ·
29 收藏

R5天气识别学习笔记

RNN及其变体在序列数据处理中的应用RNNRNN(Recurrent Neural Network,循环神经网络)是一类专门处理序列数据的神经网络模型。与传统的前馈网络(如全连接网络MLP、卷积网络CNN等)不同,RNN能够在序列的时间步之间传递信息,具备“记忆”先前输入的能力。这种特性使得RNN在处理依赖于上下文或时间顺序的任务时非常有效,例如自然语言处理(NLP)、时间序列预测和语音识别等。
原创
发布博客 2025.01.16 ·
910 阅读 ·
25 点赞 ·
0 评论 ·
25 收藏

R4-LSTM学习笔记

LSTM 的核心思想是通过门控机制来控制信息的流动。遗忘门(Forget Gate)决定哪些信息需要从细胞状态中丢弃。其中是 Sigmoid 激活函数,是权重矩阵,是偏置项,是前一时间步的隐藏状态,是当前时间步的输入。输入门(Input Gate)决定哪些新信息需要添加到细胞状态中。输出门(Output Gate)决定当前细胞状态的哪些部分将输出。
原创
发布博客 2025.01.09 ·
888 阅读 ·
25 点赞 ·
0 评论 ·
9 收藏

R1-3学习打卡

RNN 的核心思想是通过引入循环结构来捕捉序列数据中的时间依赖性。RNN 的每个隐藏层单元不仅接收当前时间步的输入,还接收前一时间步隐藏层的状态作为输入。sts_tst​是ttt时刻的隐藏状态。它是网络的“记忆”。sts_tst​stfUxtWst−1st​fUxt​Wst−1​函数fff通常是诸如tanhtanhtanh或者ReLUReLUReLU的非线性函数。
原创
发布博客 2025.01.01 ·
642 阅读 ·
22 点赞 ·
0 评论 ·
10 收藏

J9学习打卡笔记

Inception v3 的核心思想是使用Inception模块,在同一层中并行使用不同大小的卷积核(如 1x1、3x3、5x5),以捕捉不同尺度的特征。通过模块化设计,网络可以在不同层次上提取多尺度的特征,从而提高模型的泛化能力Inception v3 将输入尺寸增大到 299 * 299,优点如下:捕捉更多细节:较大的输入尺寸可以保留更多的图像细节,尤其是在高分辨率图像上。更深的特征提取:较大的输入尺寸允许卷积层在更大的感受野内提取特征,从而提高模型的表达能力。
原创
发布博客 2024.12.26 ·
1054 阅读 ·
19 点赞 ·
0 评论 ·
21 收藏

J8学习打卡笔记

主要特点和创新点(Inception模块)其设计理念是,在同一层网络中使用多种不同尺寸的卷积核(如1x1, 3x3, 5x5等)和池化层,然后将它们的输出拼接在一起。这种设计允许网络在同一空间维度上捕获多尺度特征,从而提高了网络的表达能力。1x1卷积核的使用不仅减少了计算量,还起到了降维的作用,帮助减少模型的参数数量和计算复杂度。辅助分类器:Inception v1在网络的中间层添加了两个辅助分类器。
原创
发布博客 2024.12.18 ·
415 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

J7学习打卡笔记

不报错可能是通道数已经匹配实际上采用本人代码时,修改conv_shortcut=False确实出现了错误,报错显示张量形状不匹配。
原创
发布博客 2024.12.05 ·
452 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

J6学习打卡

ResNeXt-50特点分组卷积(Grouped Convolutions):ResNeXt 引入了分组卷积的概念,将输入特征图分成多个组(group),每个组独立进行卷积操作,然后将结果拼接起来。2. 残差连接(Residual Connections):与 ResNet 类似,ResNeXt 也使用了残差连接,允许信息在网络中直接跳过某些层,从而缓解梯度消失问题,并使得训练更深的网络变得可行。
原创
发布博客 2024.11.28 ·
706 阅读 ·
13 点赞 ·
0 评论 ·
7 收藏

J5学习笔记打卡

DenseNet 通过密集连接增强了特征的复用和梯度流动,减少参数数量,提高了计算效率。SE-Net 通过学习通道间的相互依赖性来增强网络的表示能力,使得网络能够更好地关注重要的特征。DenseNet + SE-Net 结合了两者的优势,能够在复用特征的同时增强通道注意力的学习,从而进一步提升网络的性能。
原创
发布博客 2024.11.18 ·
398 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

J4学习打卡

学习了ResNet与DenseNet结合网络->DPN网络DPN网络的核心是双路径块(Dual Path Block),其结构如下:输入:输入特征图被分为两部分。分组卷积:一部分特征图通过分组卷积进行处理,类似于ResNeXt中的操作。密集连接:另一部分特征图通过密集连接进行处理,类似于DenseNet中的操作。特征融合:两部分特征图通过特定的融合方式(如相加或拼接)进行融合,形成最终的输出特征图。
原创
发布博客 2024.11.06 ·
293 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

J3学习打卡

完成了torch到tensorflow的代码转换,但是tensorflow运行显示loss较大,模型运行效果较差DenseNet采用了密集连接(Dense Connection),每一层的输入是前面所有层的输出的拼接(concatenation),而不是求和。这种设计使得每一层都能直接访问前面所有层的特征图,从而增强了特征的重用,并且减少了梯度消失问题。
原创
发布博客 2024.10.30 ·
230 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

J2学习打卡

V2对比原V1区别:预激活残差单元(Pre-activation Residual Units):ResNet(V1):在每个残差块中,卷积层在批归一化(Batch Normalization)和 ReLU 之前。ResNetV2:批归一化和 ReLU 激活在卷积操作之前。这被称为“预激活”结构,这样做有助于梯度流动,使得信息更容易传播,有助于更深的网络训练。
原创
发布博客 2024.10.24 ·
427 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

J1学习打卡

完成了tensorflow到pytorch代码的转换了解了CNN网络发展历史和残差网络由来增加训练次数获得了较为准确的模型。
原创
发布博客 2024.10.10 ·
417 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

L8打卡学习笔记

学习了随机森林模型的使用,理解了SVM和集成学习的基本原理。
原创
发布博客 2024.09.29 ·
1167 阅读 ·
19 点赞 ·
0 评论 ·
29 收藏

L5打卡学习笔记

本质上就是把输入向量的几个特征值做分类后按照影响因子排序后,作为逐层分类标准,影响因子大的排前面,例如花萼-length的影响最大的化 那么第一次就按这个参数分类,以此类推。
原创
发布博客 2024.09.26 ·
449 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏
加载更多