实数域上的压缩映射不动点原理

该博客详细证明了一个定理,如果函数f在闭区间[a,b]上连续且满足特定的界条件和差分约束,那么存在且唯一一个点x̄使得f(x̄) = x̄。文章通过构造数列xn并利用柯西收敛原理来展示数列的收敛性,最终得出结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理:

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续, ∀   x , y ∈ [ a , b ] \forall\,x,y\in[a,b] x,y[a,b],满足 a ⩽ f ( x ) ⩽ b a\leqslant f(x)\leqslant b af(x)b ∣ f ( x ) − f ( y ) ∣ ⩽ a ⋅ ∣ x − y ∣ ( 0 ⩽ a < 1 ) |f(x)-f(y)|\leqslant a\cdot |x-y|(0\leqslant a<1) f(x)f(y)axy(0a<1). 此时:存在唯一的 x ˉ ∈ [ a , b ] \bar{x}\in[a,b] xˉ[a,b],使得 f ( x ˉ ) = x ˉ f(\bar{x})=\bar{x} f(xˉ)=xˉ.

证明:

任意确定 x 0 ∈ [ a , b ] x_0\in[a,b] x0[a,b],令 x n = f ( x n − 1 ) ( n = 1 , 2 , ⋯   ) x_n=f(x_{n-1})(n=1,2,\cdots) xn=f(xn1)(n=1,2,),则

∣ x n + 1 − x n ∣ = ∣ f ( x n ) − f ( x n − 1 ) ∣ ⩽ a ∣ x n − x n − 1 ∣ |x_{n+1}-x_{n}|=|f(x_n)-f(x_{n-1})|\leqslant a|x_n-x_{n-1}| xn+1xn=f(xn)f(xn1)axnxn1

从而不难得到:

∣ x n + 1 − x n ∣ ⩽ a n ∣ x 1 − x 0 ∣ |x_{n+1}-x_{n}|\leqslant a^n|x_1-x_0| xn+1xnanx1x0

从而对任意的自然数 p p p,有:

∣ x n + p − x n ∣ ⩽ ∣ x n + p − x n + p − 1 ∣ + ∣ x n + p − 1 − x n + p − 2 ∣ + ⋯ + ∣ x n + 1 − x n ∣ ⩽ a n + p − 1 ∣ x 1 − x 0 ∣ + a n + p − 2 ∣ x 1 − x 0 ∣ + ⋯ + a n ∣ x 1 − x 0 ∣ = a n 1 − a p 1 − a ∣ x 1 − x 0 ∣ ⩽ a n 1 − a ∣ x 1 − x 0 ∣ \begin{aligned} |x_{n+p}-x_n|&\leqslant|x_{n+p}-x_{n+p-1}|+|x_{n+p-1}-x_{n+p-2}|+\cdots+|x_{n+1}-x_n|\\ &\leqslant a^{n+p-1}|x_1-x_0|+a^{n+p-2}|x_1-x_0|+\cdots+a^n|x_1-x_0|\\ &=a^n\frac{1-a^{p}}{1-a}|x_1-x_0|\\ &\leqslant\frac{a^n}{1-a}|x_1-x_0| \end{aligned} xn+pxnxn+pxn+p1+xn+p1xn+p2++xn+1xnan+p1x1x0+an+p2x1x0++anx1x0=an1a1apx1x01aanx1x0

从而

lim ⁡ n → ∞ ∣ x n + p − x n ∣ ⩽ lim ⁡ n → ∞ a n 1 − a ∣ x 1 − x 0 ∣ = 0 \lim_{n\to\infty}|x_{n+p}-x_n|\leqslant\lim_{n\to\infty}\frac{a^n}{1-a}|x_1-x_0|=0 nlimxn+pxnnlim1aanx1x0=0

根据柯西收敛原理,数列 { x n } \{x_n\} {xn} 收敛,极限记作 x ˉ \bar{x} xˉ,从而

lim ⁡ n → ∞ x n = lim ⁡ n → ∞ f ( x n − 1 ) = x ˉ \lim_{n\to\infty}x_n=\lim_{n\to\infty}f(x_{n-1})=\bar{x} nlimxn=nlimf(xn1)=xˉ

由于 f ( x ) f(x) f(x) 连续,所以

x ˉ = lim ⁡ n → ∞ f ( x n − 1 ) = f ( lim ⁡ x → ∞ x n − 1 ) = f ( x ˉ ) \bar{x}=\lim_{n\to\infty}f(x_{n-1})=f(\lim_{x\to\infty}x_{n-1})=f(\bar{x}) xˉ=nlimf(xn1)=f(xlimxn1)=f(xˉ)

下证唯一性.

假设还有 y ˉ ∈ [ a , b ] , y ˉ ≠ x ˉ \bar{y}\in[a,b],\bar{y}\ne\bar{x} yˉ[a,b],yˉ=xˉ,使 f ( y ˉ ) = y ˉ f(\bar{y})=\bar{y} f(yˉ)=yˉ,则 ∣ f ( y ˉ ) − f ( x ˉ ) ∣ = ∣ y ˉ − x ˉ ∣ |f(\bar{y})-f(\bar{x})|=|\bar{y}-\bar{x}| f(yˉ)f(xˉ)=yˉxˉ,另一方面,由题设知 ∣ f ( y ˉ ) − f ( x ˉ ) ∣ ⩽ α ∣ y ˉ − x ˉ ∣ ( 0 ⩽ α < 1 ) |f(\bar{y})-f(\bar{x})|\leqslant \alpha|\bar{y}-\bar{x}|\quad(0\leqslant\alpha<1) f(yˉ)f(xˉ)αyˉxˉ(0α<1). 故 ∣ y ˉ − x ˉ ∣ ⩽ α ∣ y ˉ − x ˉ ∣ |\bar{y}-\bar{x}|\leqslant\alpha|\bar{y}-\bar{x}| yˉxˉαyˉxˉ,矛盾.因此 x ˉ \bar{x} xˉ 是唯一的.


2021年3月26日09:50:10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值