定理:
设 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上连续, ∀ x , y ∈ [ a , b ] \forall\,x,y\in[a,b] ∀x,y∈[a,b],满足 a ⩽ f ( x ) ⩽ b a\leqslant f(x)\leqslant b a⩽f(x)⩽b 及 ∣ f ( x ) − f ( y ) ∣ ⩽ a ⋅ ∣ x − y ∣ ( 0 ⩽ a < 1 ) |f(x)-f(y)|\leqslant a\cdot |x-y|(0\leqslant a<1) ∣f(x)−f(y)∣⩽a⋅∣x−y∣(0⩽a<1). 此时:存在唯一的 x ˉ ∈ [ a , b ] \bar{x}\in[a,b] xˉ∈[a,b],使得 f ( x ˉ ) = x ˉ f(\bar{x})=\bar{x} f(xˉ)=xˉ.
证明:
任意确定 x 0 ∈ [ a , b ] x_0\in[a,b] x0∈[a,b],令 x n = f ( x n − 1 ) ( n = 1 , 2 , ⋯ ) x_n=f(x_{n-1})(n=1,2,\cdots) xn=f(xn−1)(n=1,2,⋯),则
∣ x n + 1 − x n ∣ = ∣ f ( x n ) − f ( x n − 1 ) ∣ ⩽ a ∣ x n − x n − 1 ∣ |x_{n+1}-x_{n}|=|f(x_n)-f(x_{n-1})|\leqslant a|x_n-x_{n-1}| ∣xn+1−xn∣=∣f(xn)−f(xn−1)∣⩽a∣xn−xn−1∣
从而不难得到:
∣ x n + 1 − x n ∣ ⩽ a n ∣ x 1 − x 0 ∣ |x_{n+1}-x_{n}|\leqslant a^n|x_1-x_0| ∣xn+1−xn∣⩽an∣x1−x0∣
从而对任意的自然数 p p p,有:
∣ x n + p − x n ∣ ⩽ ∣ x n + p − x n + p − 1 ∣ + ∣ x n + p − 1 − x n + p − 2 ∣ + ⋯ + ∣ x n + 1 − x n ∣ ⩽ a n + p − 1 ∣ x 1 − x 0 ∣ + a n + p − 2 ∣ x 1 − x 0 ∣ + ⋯ + a n ∣ x 1 − x 0 ∣ = a n 1 − a p 1 − a ∣ x 1 − x 0 ∣ ⩽ a n 1 − a ∣ x 1 − x 0 ∣ \begin{aligned} |x_{n+p}-x_n|&\leqslant|x_{n+p}-x_{n+p-1}|+|x_{n+p-1}-x_{n+p-2}|+\cdots+|x_{n+1}-x_n|\\ &\leqslant a^{n+p-1}|x_1-x_0|+a^{n+p-2}|x_1-x_0|+\cdots+a^n|x_1-x_0|\\ &=a^n\frac{1-a^{p}}{1-a}|x_1-x_0|\\ &\leqslant\frac{a^n}{1-a}|x_1-x_0| \end{aligned} ∣xn+p−xn∣⩽∣xn+p−xn+p−1∣+∣xn+p−1−xn+p−2∣+⋯+∣xn+1−xn∣⩽an+p−1∣x1−x0∣+an+p−2∣x1−x0∣+⋯+an∣x1−x0∣=an1−a1−ap∣x1−x0∣⩽1−aan∣x1−x0∣
从而
lim n → ∞ ∣ x n + p − x n ∣ ⩽ lim n → ∞ a n 1 − a ∣ x 1 − x 0 ∣ = 0 \lim_{n\to\infty}|x_{n+p}-x_n|\leqslant\lim_{n\to\infty}\frac{a^n}{1-a}|x_1-x_0|=0 n→∞lim∣xn+p−xn∣⩽n→∞lim1−aan∣x1−x0∣=0
根据柯西收敛原理,数列 { x n } \{x_n\} {xn} 收敛,极限记作 x ˉ \bar{x} xˉ,从而
lim n → ∞ x n = lim n → ∞ f ( x n − 1 ) = x ˉ \lim_{n\to\infty}x_n=\lim_{n\to\infty}f(x_{n-1})=\bar{x} n→∞limxn=n→∞limf(xn−1)=xˉ
由于 f ( x ) f(x) f(x) 连续,所以
x ˉ = lim n → ∞ f ( x n − 1 ) = f ( lim x → ∞ x n − 1 ) = f ( x ˉ ) \bar{x}=\lim_{n\to\infty}f(x_{n-1})=f(\lim_{x\to\infty}x_{n-1})=f(\bar{x}) xˉ=n→∞limf(xn−1)=f(x→∞limxn−1)=f(xˉ)
下证唯一性.
假设还有 y ˉ ∈ [ a , b ] , y ˉ ≠ x ˉ \bar{y}\in[a,b],\bar{y}\ne\bar{x} yˉ∈[a,b],yˉ=xˉ,使 f ( y ˉ ) = y ˉ f(\bar{y})=\bar{y} f(yˉ)=yˉ,则 ∣ f ( y ˉ ) − f ( x ˉ ) ∣ = ∣ y ˉ − x ˉ ∣ |f(\bar{y})-f(\bar{x})|=|\bar{y}-\bar{x}| ∣f(yˉ)−f(xˉ)∣=∣yˉ−xˉ∣,另一方面,由题设知 ∣ f ( y ˉ ) − f ( x ˉ ) ∣ ⩽ α ∣ y ˉ − x ˉ ∣ ( 0 ⩽ α < 1 ) |f(\bar{y})-f(\bar{x})|\leqslant \alpha|\bar{y}-\bar{x}|\quad(0\leqslant\alpha<1) ∣f(yˉ)−f(xˉ)∣⩽α∣yˉ−xˉ∣(0⩽α<1). 故 ∣ y ˉ − x ˉ ∣ ⩽ α ∣ y ˉ − x ˉ ∣ |\bar{y}-\bar{x}|\leqslant\alpha|\bar{y}-\bar{x}| ∣yˉ−xˉ∣⩽α∣yˉ−xˉ∣,矛盾.因此 x ˉ \bar{x} xˉ 是唯一的.
2021年3月26日09:50:10