Tensorflow C++ 学习(一) 搭建环境

5 篇文章 0 订阅
1 篇文章 0 订阅

转自:http://blog.csdn.net/jmh1996/article/details/73197337?locationNum=6

前言

Tensorflow 网上大部分是python的资料较多,而C++方面的极少,因此,接下来会有一系列的博客用于学习tensorflow,记录学习的过程。加油!

搭建环境

既然使用C++的API,那第一步就是搭建Tensorflow的工作环境 
1. 准备一台64位的虚拟机 ,我安装的ubuntu 16.04 64位的. 用新的虚拟机主要是图个干净利落,同时修改好软件源,建议改成阿里云的,安装一些常用的运行库,开发库。 
2. 安装 bazel

> echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources .list .d /bazel .list curl https://bazel .build /bazel-release .pub .gpg | sudo apt-key add ->sudo apt-get update && sudo apt-get install bazel


可能会提示没有安装curl,则需要先安装curl

> sudo apt-get install curl
 
 
  • 1

安装bazel

>sudo apt-get update && sudo apt-get install bazel
 
 
  • 1

本人使用 ubuntu 16.04刚上的虚拟机,妥妥的。 
3. 安装python的一些常用库

>sudo apt-get install sudo apt-get install python-numpy python-dev python-pip python-wheel -y
 
 
  • 1
  1. 安装cpu 开发工具库
>sudo apt-get install libcupti-dev
 
 
  • 1
  1. 下载tensorflow 源码
>sudo apt-get install git 
>git clone https://github.com/tensorflow/tensorflow
>cd tensorflow
>./configure #这一步不可少!否则后面c++编译不过

 
 
  • 1
  • 2
  • 3
  • 4
  • 5

出现这个就配置对了:

INFO:All external dependencies fetched successfully.

  1. 安装tensorflow ,使用pip
>pip install --upgrade tensorflow
 
 
  • 1
  1. 测试C++接口

将 tensorflow目录下的:tensorflow/cc/example/example.cc 文件内容替换为(没有就新建一个这个目录下的文件):

// tensorflow/cc/example/example.cc

#include "tensorflow/cc/client/client_session.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/tensor.h"

int main() {
  using namespace tensorflow;
  using namespace tensorflow::ops;
  Scope root = Scope::NewRootScope();
  // Matrix A = [3 2; -1 0]
  auto A = Const(root, { {3.f, 2.f}, {-1.f, 0.f}});
  // Vector b = [3 5]
  auto b = Const(root, { {3.f, 5.f}});
  // v = Ab^T
  auto v = MatMul(root.WithOpName("v"), A, b, MatMul::TransposeB(true));
  std::vector<Tensor> outputs;
  ClientSession session(root);
  // Run and fetch v
  TF_CHECK_OK(session.Run({v}, &outputs));
  // Expect outputs[0] == [19; -3]
  std::cout<< outputs[0].matrix<float>();
  return 0;
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

在tensorflow/cc/example/ 目录下新建一个BUILD文件,文件内容:

cc_binary(
    name = "example",
    srcs = ["example.cc"],
    deps = [
        "//tensorflow/cc:cc_ops",
        "//tensorflow/cc:client_session",
        "//tensorflow/core:tensorflow",
    ],
)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

编译:

>cd tensorflow #回到tensorflow的主目录下
>bazel run -c opt //tensorflow/cc/example:example
 
 
  • 1
  • 2

然后首次编译很久,等一会儿就好。

最后打印出:

2017-06-13 17:20:50.578854: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-13 17:20:50.578970: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-13 17:20:50.578992: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
19
-3
 
 
  • 1
  • 2
  • 3
  • 4
  • 5

说明安装成功。 
但是!这里有太多的调试信息了,我们把它去掉:

>export TF_CPP_MIN_LOG_LEVEL=2 
>bazel-bin/tensorflow/cc/example/example
 
 
  • 1
  • 2

打印:

19
-3
 
 
  • 1
  • 2

OK Perfect!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值