Codeforces Round #721 (Div. 2) D、E题解

这篇博客讨论了图论中的Dijkstra算法及其在链式结构上的应用,同时介绍了如何利用决策单调性优化动态规划模板,解决复杂问题。文章通过两个具体的题目实例——D.MEXTree和PartitionGame,详细阐述了解题思路和代码实现,涉及链的路径计数和双端队列剪枝等技术。
摘要由CSDN通过智能技术生成

D. MEX Tree

这题需要维护一条链,如果0,1,2,\cdots ,i在同一条链上,但是i+1不在这条链上,那么ans[i+2]=0,ans[i+3]=0,...

ans[i]表示包含0,1,2,\cdots,i-1的路径数,然后算出每个ans[i]后容斥就好了。

具体看写法。

这题2400难度,果然2400难度的题都是有一些想法但是写不出来的题。

#include<bits/stdc++.h>
using namespace std ;
int main()
{
    std::ios::sync_with_stdio(false) , cin.tie(0) ;
    int T ;
    cin >> T ;
    while(T --)
    {
        int n ;
        cin >> n ;
        vector<vector<int>> g(n + 1) ;
        for(int i = 1 ; i <= n - 1 ; i ++)
        {
            int u , v ;
            cin >> u >> v ;
            g[u].push_back(v) ;
            g[v].push_back(u) ;
        }
        vector<int> f(n + 1 , 0) ;
        vector<int> siz(n + 1 , 0) ;
        vector<int> siz2(n + 1 , 0) ;
        function<void(int , int)> dfs = [&](int fa , int u)
        {
            siz[u] = 1 ;
            f[u] = fa ;
            for(auto v : g[u])
            {
                if(v == fa)  continue ;
                dfs(u , v) ;
                siz[u] += siz[v] ;
            }
        } ;
        dfs(0 , 0) ;
        function<void(int , int , int)> dfs2 = [&](int fa , int u , int num)
        {
            siz2[u] = num ;
            for(auto v : g[u])
            {
                if(v == fa)  continue ;
                dfs2(u , v , num) ;
            }
        } ;
        for(auto v : g[0])  dfs2(0 , v , siz[v]) ;
        //ans[i]��ʾ����[0 , i - 1]��·����
        vector<long long> ans(n + 2 , 0) ;
        ans[0] = 1ll * n * (n - 1) / 2 ;
        ans[1] = ans[0] ;
        auto cal = [&](int x)
        {
            return 1ll * x * (x - 1) / 2 ;
        } ;
        for(auto v : g[0])  ans[1] -= cal(siz[v]) ;
        bool flag = true ;
        int l = 0 , r = 0 ;
        vector<bool> vis(n + 1 , false) ;
        vis[0] = true ;
        for(int i = 1 ; i <= n - 1 ; i ++)
        {
            int t = i ;
            if(!vis[t])
            {
                while(!vis[t])  vis[t] = true , t = f[t] ;
                if(!flag)  ans[i + 1] = 0 ;
                else
                {
                    if(t == l)  l = i ;
                    else if(t == r)  r = i ;
                    else  flag = false ;
                }
            }
            if(!flag)  ans[i + 1] = 0 ;
            else
            {
                if(r == 0)  ans[i + 1] = 1ll * siz[l] * (n - siz2[l]) ;
                else  ans[i + 1] = 1ll * siz[l] * siz[r] ;
            }
        }
        for(int i = 0 ; i <= n - 1 ; i ++)  ans[i] -= ans[i + 1] ;
        for(int i = 0 ; i <= n ; i ++)  cout << ans[i] << " \n"[i == n] ;
    }
    return 0 ;
}

 

E. Partition Game

决策单调性分治优化dp模板题。

决策点肯定是单调的,脑补下就知道了。

不过算贡献时候需要用双端队列剪枝,均摊下来复杂度是对的。

指针移动的复杂度我是分成L和R两部分证明 L的移动是最优决策点的移动 R的移动相当于是二叉树每个节点代表的区间长度和 都是n*logn

UPD:好吧,我承认这道题用线段树优化dp很傻逼。jiangly,yyds。

#include<bits/stdc++.h>
using namespace std ;
int main()
{
    std::ios::sync_with_stdio(false) , cin.tie(0) ;
    int n , k ;
    cin >> n >> k ;
    vector<int> a(n + 1) ;
    for(int i = 1 ; i <= n ; i ++)  cin >> a[i] ;
    vector<vector<int>> dp(n + 1 , vector<int>(k + 1 , 2000000000)) ;
    dp[0][0] = 0 ;
    vector<int> nxt(n + 1 , n + 1) ;
    vector<int> pos(n + 1 , n + 1) ;
    for(int i = n ; i >= 1 ; i --)
    {
        if(pos[a[i]] > n)
        {
            pos[a[i]] = i ;
        }
        else
        {
            nxt[i] = pos[a[i]] ;
            pos[a[i]] = i ;
        }
    }
    vector<int> lst(n + 1 , 0) ;
    vector<int> po(n + 1 , n + 1) ;
    for(int i = 1 ; i <= n ; i ++)
    {
        if(po[a[i]] > n)
        {
            po[a[i]] = i ;
        }
        else
        {
            lst[i] = po[a[i]] ;
            po[a[i]] = i ;
        }
    }
    vector<int> q(n + 10 , 0) ;
    int L = 1 , R = 0 ;
    int res = 0 ;
    auto cal = [&](int l , int r)
    {
        while(R < r)
        {
            R ++ ;
            if(lst[R] >= L)  res += R - lst[R] ;  
        }
        while(L > l)
        {
            L -- ;
            if(nxt[L] <= R)  res += nxt[L] - L ;
        }
        while(R > r)
        {
            if(lst[R] >= L)  res -= R - lst[R] ;  
            R -- ;
        }
        while(L < l)
        {
            if(nxt[L] <= R)  res -= nxt[L] - L ;
            L ++ ;
        }
        return res ;
    } ;
    function<void(int , int , int , int , int)> solve = [&](int t , int l1 , int r1 , int l2 , int r2)
    {
        if(l2 > r2)  return ;
        int mid = (l2 + r2) / 2 ;
        int id = l1 ;
        for(int i = l1 ; i <= min(r1 , mid) ; i ++)
        {
            if(i > mid)  continue ;
            int sum = dp[i - 1][t - 1] + cal(i , mid) ;
            if(sum < dp[mid][t])
            {
                dp[mid][t] = sum ;
                id = i ;
            }
        }
        solve(t , l1 , id , l2 , mid - 1) ;
        solve(t , id , r1 , mid + 1 , r2) ;
    } ;
    for(int j = 1 ; j <= k ; j ++)  solve(j , 1 , n , 1 , n) ;
    cout << dp[n][k] << '\n' ;
    return 0 ;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值