Pytorch(GPU)环境安装

CUDA,CUDNN与PyTorch安装教程:2023年最新指南
本文详细指导如何在Windows上安装CUDA、CUDNN,以及创建和激活PyTorchGPU环境,包括设置镜像源、创建虚拟环境和验证PyTorch对GPU支持的过程。
部署运行你感兴趣的模型镜像

win+R:启动cmd; 输入nvidia-smi 查看cuda的配置

(1) 安装CUDA

地址:https://developer.nvidia.com/cuda-downloads

详细参考:安装CUDA与CUDNN与Pytorch(最新超级详细图文版本2023年8月最新)_pytorch安装cudnn_LyaJpunov的博客-CSDN博客

(2) 安装CUDNN加速

地址:NVIDIA Developer Program Membership Required | NVIDIA Developer

详细参考:安装CUDA与CUDNN与Pytorch(最新超级详细图文版本2023年8月最新)_pytorch安装cudnn_LyaJpunov的博客-CSDN博客

(3) 创建pytorch-gpu的虚拟环境

查看镜像源通道:

conda config --show-sources 

在C盘中的用户目录下,查看.condarc文件:将下面的配置复制上,并保存:(使用的阿里云的镜像源)

​
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.aliyun.com/anaconda/pkgs/main
  - https://mirrors.aliyun.com/anaconda/pkgs/r
  - https://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.aliyun.com/anaconda/cloud
  msys2: https://mirrors.aliyun.com/anaconda/cloud
  bioconda: https://mirrors.aliyun.com/anaconda/cloud
  menpo: https://mirrors.aliyun.com/anaconda/cloud
  pytorch: https://mirrors.aliyun.com/anaconda/cloud
  simpleitk: https://mirrors.aliyun.com/anaconda/cloud

​

在anaconda中创建pytorch的虚拟环境:

conda create -n pytorch-gpu python=3.9

激活环境:然后根据要求点yes 就行。

conda activate pytorch-gpu 

(4) 安装pytorch: 找到自己对应的cuda的版本,然后复制

pytorch的官网:https://pytorch.org/

下载对应的包:

安装完毕后查看pytorch  是否可以使用cuda:

第一步输入:

python

第二步输入:

import torch
torch.cuda.is_available()

结果为:True就说明可以使用了。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值