实验五 连续系统分析
| 实验日期: | 2024年6月5日星期三 | 评 分: |
- 实验目的
深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义,掌握根据系统函数的零极点设计简单的滤波器的方法。掌握利用MATLAB分析连续系统的时域响应、频响特性和零极点的基本方法。
- 实验原理
MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。
- 实验内容
- 已知描述连续系统的微分方程为dy(t)dx+10yt=2x(t),输入xt=u(t),初始状态y0-=1,计算该系统的响应,并与理论结果比较,列出系统响应分析的步骤。
解:代码:

运行结果:

从图中可以看出数值计算的值与理论值相差很小。
系统响应的分析步骤:
- 将给定的微分方程转换为状态空间表示。
- 使用MATLAB的tf函数创建传递函数。
- 使用step函数计算系统的响应。
- 使用plot函数绘制系统响应与理论结果的比较图。
2、已知连续时间系统的系统函数为
,求输入
分别为
,
,
时,系统地输出
,并与理论结果比较。
解:代码:


运行结果:

从图中可以看出数值计算的值与理论值相差很小。
3、研究具有以下零极点的连续系统:
(a)1个极点s=-0.1,增益k=1。
(b)1个极点s=0,增益k=1。
(c)2个共轭极点s=±j5
,增益k=1。
(d)2个共轭极点s=-0.5±j5
,增益k=1。
(e)零点在s=0.5,极点在s=-0.1±j5
,增益k=1。
(f) 零点在s=0.5,极点在s=0.1±j5
,,增益k=1。
完成下列任务:
(1)利用zpk和tf命令建立系统的系统函数,画出系统的零极图。
(2)分析系统是否稳定。若稳定,画出系统的幅频特性曲线。
(3)画出系统的冲激响应波形。
(4)详细列出根据零极点分析系统特性的过程。
解:(a)代码:

运行结果:

极点位于s左半平面,系统稳定。
(b)代码:

运行结果:

极点位于jw轴,系统不稳定。
(c)代码:

运行结果:

极点位于jw轴,系统不稳定
(d)代码:

运行结果:

全部极点位于s左半平面,系统稳定。
(e)代码:

运行结果:

全部极点位于s左半平面,系统稳定。
(f)代码:

运行结果:

极点位于s右半平面,系统不稳定。
分析系统特性的过程:
-
- 根据零极点得到系统的传递函数
- 分析系统的稳定性
- 绘制零极点分布图
- 得到频率响应并分析
4、根据连续系统零极点对系统幅频特性的影响设计下面系统。在S平面上置零极点,并使用freqs命令绘出相应的幅频特性曲线,重复该过程直至找到满足下面指标的零极点。
(1)设计一个具有2个零点,2个极点,实系数的高通滤波器,满足
![]()
![]()
解:![]()
代码:

运行结果:

- 实验思考题
- 系统函数的零极点对系统频率特性有何影响?
(1)极点对频率响应的影响
极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐。极点会使调节时间变短,使系统反应更快,但也会使系统的稳定性变差。当频率接近某极点的模时,该极点使得频率响应的幅度以20dB/dec的速度衰减,而相位相对DC产生-π/2的变化。
(2)零点对频率响应的影响
谷值影响:零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深(当零点在单位圆上时,频率特性为零)。
稳定性影响:零点一般是使得稳定性增加,但是会使调节时间变长。
相位影响:当频率接近某零点的模时,该零点使得频率响应的幅度以20dB/dec的速度增加,而相位相对DC产生π/2(当零点在左半平面)或-π/2(当零点在右半平面)的变化。
(3)零极点对相位的影响
相位超前:零点最大可以带来90°的相位超前。
相位延迟:一个极点最多只能产生90°的相移。
(4)零极点对系统稳定性的影响
稳定性判断:零极点是用于判断系统的稳定性的。
结构调整:对于结构不稳定系统,改变系统结构后,只要适当选配参数就可使系统稳定。
(5)零极点对冲激响应的影响
响应模式:冲激响应波形是指指数衰减还是指数增长或等幅振荡,主要取决于极点位于s左半平面还是右半平面或在虚轴上。
快慢影响:冲激响应波形衰减或增长快慢,主要取决于极点离虚轴的距离远近。
(6)零极点对系统动态响应的影响
调节时间:极点会使调节时间变短,零点会使调节时间变长。
振荡快慢:冲激响应波形振荡的快慢,主要取决于极点离实轴的远近。
- 对于因果稳定、实系数的低通、高通、带通、带阻滤波器,零极点分布有何特点?
- 低通滤波器:低通滤波器通常只有极点,并且这些极点都位于s平面的左半部分,以确保系统的稳定性。低通滤波器没有零点,或者零点不会影响传递函数的值。
- 高通滤波器:高通滤波器的极点同样位于s平面的左半部分,以保证系统的稳定性。与低通相反,高通滤波器的零点在原点上或右半s平面,这有助于强调高频信号的通过。
- 带通滤波器:带通滤波器有一对共轭对称的极点,它们位于s平面的左半部分,确保稳定性的同时,影响滤波器的频率选择特性。带通滤波器的零点关于虚轴对称,它们的分布确定了滤波器的带宽和中心频率。
- 带阻滤波器:带阻滤波器的极点分布在零点的外侧,以形成一个阻止特定频段信号通过的特性。带阻滤波器的零点位于极点的内部,这种配置有助于削弱特定频率范围内的信号。
- 系统函数的零极点对系统冲激响应有何影响?
- 极点分布的影响:冲激响应波形是指数衰减、指数增长还是等幅振荡,主要取决于极点位于s左半平面、右半平面或在虚轴上。冲激响应波形衰减或增长的快慢,主要取决于极点离虚轴的远近。冲激响应波形振荡的快慢,主要取决于极点离实轴的远近。
- 零点分布的影响:零点分布只影响冲激响应函数的幅度和相位,不影响响应模式
- 若某因果系统不稳定,有哪些主要措施可使之稳定?
- 调整极点位置
- 增加零点抵消
- 修改系统结构
- 减少系统延迟
- 应用滤波技术
- 稳定性:零极点抵消可能会导致系统的稳定性降低。如果抵消的极点原本位于复平面的右半部分,即不稳定区域,那么抵消后可能使系统从不稳定变为稳定,或者相反
- 动态响应:零极点抵消会改变系统的动态响应特性。由于零点和极点的抵消,系统的频率响应中的某些峰值和谷值可能会被消除,从而影响系统对特定频率信号的放大或抑制能力
- 稳态误差:零极点抵消会影响系统的稳态误差。在某些情况下,通过引入零点来抵消靠近原点的极点,可以减少系统的稳态误差,提高系统的准确性
- 在工程实际中,系统函数的零极点有哪些主要应用?
- 控制系统设计:通过调整极点的位置,工程师可以优化系统的响应速度,使系统更快地达到稳定状态
- 滤波器设计:在滤波器设计中,极点和零点的分布决定了滤波器的频率选择性。通过合理配置零极点,可以实现低通、高通、带通和带阻等滤波特性
- 信号处理:傅里叶变换可以将信号分解成多个不同频率的正弦波组合,而零极点图可以帮助我们理解信号的频率构成,从而进行更精确的信号处理
- 使用计算机分析连续系统,需要解决连续系统离散化的问题,怎样离散化?
- 数值积分法
- 微分方程离散化
- 连续系统响应的计算机求解可以分为哪些方法?
- 数值积分法:欧拉法把微分方程转化为差分方程利用递推求解。龙格-库塔法通过计算函数在几个点上的值来提高精度,常用的有四阶龙格-库塔法,它通过四个斜率的加权平均来得到更精确的解。
- 离散相似法:z变换法将连续系统的传递函数通过z变换转换为离散域的脉冲传递函数,然后通过z逆变换得到离散时间响应。
- 解析法:通过拉普拉斯变换将微分方程转换为代数方程,求解后再通过拉普拉斯逆变换得到时间域的解。
490

被折叠的 条评论
为什么被折叠?



