import re
‘’’
re.compile(string[, flags])
re.match(pattern, string[, flags])
re.search(pattern, string[, flags])
re.split(pattern, string[, maxsplit])
re.findall(pattern, string[, flags])
re.finditer(pattern, string[, flags])
re.sub(pattern, repl, string[, count])
re.subn(pattern, repl, string[, count])
‘’’
----------------------------------------------------------------------
1、re.compile()
将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(r’hello’)
‘’’
分析:
pattern对象是一个匹配模式,利用pattern可以进一步的匹配。
‘’’
----------------------------------------------------------------------
‘’’
分析:
参数flag是匹配模式,取值可以使用按位或运算符’|'表示同时生效,如re.I|re.M
re.I:忽略大小写
re.M:多行模式,改变'^'和'$'的行为
re.S:点任意模式
re.L:使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
re.U:使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
re.X:详细模式
‘’’
----------------------------------------------------------------------
2、re.match(pattern, string[, flags])
‘’’
如果遇到无法匹配的字符,立即返回None,如果匹配未结束已经到达string的末尾,也会返回None。
两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对string向后匹配
‘’’
result1 = re.match(pattern, ‘hello’)
result2 = re.match(pattern, ‘helloo cioc’)
result3 = re.match(pattern, ‘helo cioc’)
result4 = re.match(pattern, ‘hello cioc’)
如果1匹配成功
if result1:
# 使用Match获得分组信息
print result1.group()
else:
print ‘1匹配失败!’
如果2匹配成功
if result2:
# 使用Match获得分组信息
print result2.group()
else:
print ‘2匹配失败!’
如果3匹配成功
if result3:
# 使用Match获得分组信息
print result3.group()
else:
print ‘3匹配失败!’
如果4匹配成功
if result4:
# 使用Match获得分组信息
print result4.group()
else:
print ‘4匹配失败!’
‘’’
分析:
只要匹配成功,就不再匹配了。
1.第一个匹配,pattern正则表达式为’hello’,我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。
2.第二个匹配,string为helloo cioc,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的不再匹配,返回匹配成功的信息。
3.第三个匹配,string为helo cioc,从string头开始匹配pattern,发现到 ‘o’ 时无法完成匹配,匹配终止,返回None
4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响
‘’’
‘’’
分析:
属性:
1.string: 匹配时使用的文本。
2.re: 匹配时使用的Pattern对象。
3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
1.group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;
不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
2.groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
3.groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
4.start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
5.end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
6.span([group]):
返回(start(group), end(group))。
7.expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;
但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g0。
‘’’
一个简单的match实例
匹配如下内容:单词+空格+单词+任意字符
m = re.match(r’(\w+) (\w+)(?P.*)’, ‘hello world!’)
print “m.string:”, m.string
print “m.re:”, m.re
print “m.pos:”, m.pos # 匹配初始位置
print “m.endpos:”, m.endpos # 匹配结束位置
print “m.lastindex:”, m.lastindex
print “m.lastgroup:”, m.lastgroup
print “m.group():”, m.group()
print “m.group(1,2):”, m.group(1, 2)
print “m.groups():”, m.groups()
print “m.groupdict():”, m.groupdict()
print “m.start(2):”, m.start(2)
print “m.end(2):”, m.end(2)
print “m.span(2):”, m.span(2)
print r"m.expand(r’\g \g\g’):", m.expand(r’\2 \1\3’)
output
m.string: hello world!
m.re:
m.pos: 0
m.endpos: 12
m.lastindex: 3
m.lastgroup: sign
m.group(1,2): (‘hello’, ‘world’)
m.groups(): (‘hello’, ‘world’, ‘!’)
m.groupdict(): {‘sign’: ‘!’}
m.start(2): 6
m.end(2): 11
m.span(2): (6, 11)
m.expand(r’\2 \1\3’): world hello!
----------------------------------------------------------------------
3、re.search(pattern, string[, flags])
‘’’
分析:
match()是从string的开始位置进行匹配,而search()会扫描整个string中进行查找匹配
‘’’
pattern = re.compile(r’world!’)
match = re.search(pattern, ‘hello world!’) # search()查找匹配的字符串
if match:
print match.group()
else:
print ‘匹配失败!’
----------------------------------------------------------------------
4、re.split(pattern, string[, maxsplit])
‘’’
分析:
按照能够匹配的子串将string分割,并返回列表(注意,返回的是列表形式)
maxsplit指定最大分割次数,不指定就全部分割
‘’’
pattern = re.compile(r’\d+’)
print re.split(pattern, ‘one1two2three3forth4five5’)
out:
[‘one’, ‘two’, ‘three’, ‘forth’, ‘five’, ‘’]
----------------------------------------------------------------------
5、re.findall(pattern, string[, flags])
pattern = re.compile(r’\d+’)
print re.findall(pattern, ‘one1two2three3forth4five5’)
out:
[‘1’, ‘2’, ‘3’, ‘4’, ‘5’]
----------------------------------------------------------------------
6、re.finditer(pattern, string[, flags])
‘’’
分析:
搜索string,返回一个顺序访问每一个匹配结果的迭代器
‘’’
pattern = re.compile(r’\d+’)
for m in re.finditer(pattern, ‘one1two2three3forth4five5’):
print m.group()
out:
1 2 3 4 5
----------------------------------------------------------------------
7、re.sub(pattern, repl, string[, count])
pattern = re.compile(r’(\w+)(\w+)’)
s = ‘i say, hello world’
print re.sub(pattern, r’\2\1’, s)
def func(m):
return m.group(1).title() + ‘’ + m.group(2).title()
print re.sub(pattern, func, s)
----------------------------------------------------------------------
8、re.subn(pattern, repl, string[, count])
pattern = re.compile(r’(\w+)(\w+)’)
s = ‘i say , hello world!’
print re.subn(pattern, r’\2\1’, s)
def func(m):
return m.group(1).title() + m.group(2).title()
print re.subn(pattern, func, s)
作者:kevinelstri
来源:CSDN
原文:https://blog.csdn.net/kevinelstri/article/details/52912634
版权声明:本文为博主原创文章,转载请附上博文链接!