最长上升子序列(LIS) 、最长公共子序列(LCS)

一、最长上升子序列  (LIS)(一般好像没有遇到过输出最长上升子序列元素的情况,所以就没整理)

为DP问题,所以我们可以用DP来解决。

它有两种算法:

1、 时间复杂度为O(n^2)——dp 解决
递推关系:

dp[i]={1,d[j]+1|j<i且aj<ai} 
dp[]:代表 以 ai   为末尾的最长上升子序列的长度 
而以ai结尾的上升子序列又包含两种情况: 
(1)只包含ai的子序列 
(2)在满足 j<i 并且  aj<ai  的以aj 为结尾的上升子列末尾,追加上ai  后得到的子序列。 
我们依次遍历整个序列,每一次求出从第一个数到当前这个数的最长上升子序列,直至遍历到最后一个数字为止,然后

再取dp数组里最大的那个即为整个序列的最长上升子序列。我们用dp[i]来存放序列1-i的最长上升子序列的长度,那么dp[i]=max(dp[j])+1,(j∈[1, i-1]); 显然dp[1]=1,我们从i=2开始遍历后面的元素即可   
代码如下:

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstring>
using namespace std;

const int N=1e6;
int n,a[N],dp[N];


void f()  //求最长上升子序列
{
    int ans=0;
    for(int i=1;i<=n;i++)
    {
        dp[i]=1;
        for(int j=1;j<=n;j++)
            if(a[j]<a[i])
              dp[i]=max(dp[i],dp[j]+1);
        ans=max(dp[i],ans);
    }
    cout<<ans<<endl;
}

int main()
{
    memset(a,0,sizeof(a));
    memset(dp,0,sizeof(dp));
    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>a[i];
    f();
    return 0;
}

2、时间复杂度为O(nlogn)——二分法解决

Code:

(1)、用到了二分法的两个函数,这篇博客有详细介绍

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define MAXN 40005
using namespace std;
int arr[MAXN],ans[MAXN],len;
int main()
{
    int n;
    int T;
    cin>>T;
    while(T--)
    {
        cin>>n;
        for(int i=1; i<=n; ++i)
            scanf("%d",&arr[i]);
        ans[1] = arr[1];
        len=1;
        for(int i=2; i<=n; ++i)
        {
            if(arr[i]>ans[len])
                ans[++len]=arr[i];
            else
            {
                int pos=lower_bound(ans,ans+len,arr[i])-ans;
                ans[pos] = arr[i];
            }
        }
        cout<<len<<endl;
    }
    return 0;
}

(2)、普通的二分,控制左右端点

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int MAX=50000;
using namespace std;
int arr[MAX+50],ans[MAX+50],len;
int binary_search(int i)//手写二分法
{
    int left,right,mid;
    left=0,right=len;
    while(left<right)
    {
        mid = left+(right-left)/2;
        if(ans[mid]>=arr[i]) right=mid;
        else left=mid+1;
    }
    return left;
}
int main()
{
    int n;
    cin>>n;
    for(int i=1; i<=n; i++)
        cin>>arr[i];
    ans[0] = arr[1];
    len=0;
    for(int i=2; i<=n; i++)
    {
        if(arr[i]>ans[len])
            ans[++len]=arr[i];
        else
        {
            int pos=binary_search(i);
            ans[pos] = min(ans[pos],arr[i]);
        }
    }

    cout<<len+1<<endl;//数组大小就是最长上升子序列的个数

}

二、最长公共子序列(LCS)  ( 有的题目需要进行回溯,输出哪些是公共的元素)


  z0,z1, z2,......zk-1  为最长上升子序列的长度的话

(1)、若 Sn-1=Tm-1=zk-1  的话,

              则 z0...zk-2  为 S0,S1...Sn-2 和 T0,T1...Tn-2 的最长公共子序列

(2)、若  Sn-1 != Tm-1的话,

             分了两种情况

              (1)、Sn-1 !=zk-1 && Tm-1 =zk-1,z0...zk-1 是 S0,S1...Sn-2 和 T0,T1...Tn-1  的最长公共子序列

              (2)、Tm-1 !=zk-1 && Sn-1 =zk-1,z0...zk-1 是 S0,S1...Sn-1 和 T0,T1...Tn-2  的最长公共子序列

比较两个数组 s[i]  t[i] 共同元素的最长长度

引进一个二维数组dp[][],用    dp[i][j]     记录s[i]与t[j] 的LCS 的长度. 
我们是自底向上进行递推计算,那么在计算dp[i,j]之前,dp[i-1][j-1],dp[i-1][j]与dp[i][j-1]  均已计算出来。

此时我们根据s[i] = t[j]还是s[i] != t[j],就可以计算出dp[i][j]。

问题的递归式写成:


介绍一下递归式:

如果当前两个字符串为 0的话,长度就是 0;

如果当前两个字符相等的话,可以看成以当前字符结尾的子序列,由上一个状态的长度加 1得到的 ;

如果不相等的话,就去找一个最大值


首先做初始化。将  dp[0][i]   和从   dp[i][0]  初始化为0,然后一行一行的填表

Code:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=1e6;
int dp[500][500];
char s[1000],t[1000];
int n,m;

void f()
{
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
        if(s[i]==t[j])
            dp[i+1][j+1]=dp[i][j]+1;
        else
            dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
    cout<<dp[n][m]<<endl;
}


int main()
{
    scanf("%s%s",s,t);
    n=strlen(s);
    m=strlen(t);
    f();
    return 0;
}

回溯输出最长公共子序列过程: 
这里写图片描述

Code :

void BUILD_LCS(int len,int len1)
{
    if(len==0||len1==0)
        return ;
    if(s[len-1]==c[len1-1]){
        BUILD_LCS(len-1,len1-1);
        cout<<c[len1-1];
    }
    else{
        if(dp[len-1][len1]>dp[len][len1-1])
            BUILD_LCS(len-1,len1);
        else
            BUILD_LCS(len,len1-1);
    }
}

 

展开阅读全文

没有更多推荐了,返回首页