Online Notes

Inner Peace

Detection-Timeline

Year Month Algorithm Improve Conference 2013 11 R-CNN 将CNN用于Detection CVPR2014 = = = = = 2014 6 SPPNet ...

2018-04-23 15:24:01

阅读数:137

评论数:0

深度学习: 选择合适的检测算法

ResNet之前 在ResNet (2015.12) 出来之前,basemodel经历了从AlexNet一家独大,到VGG和GoogleNet平分天下的时期。 ResNet之后 ResNet出来后,由于其简单和强大,成为了basemodel的绝对标杆。 如今从业者一般遵循以下流程: 先...

2018-06-11 14:21:35

阅读数:26

评论数:0

深度学习: 从新视角 综述 Detection算法

前言 该篇blog会持续更新,不断记录我对Detection算法的新总结。 目的性 “去重”&“加重” “去重”的算法 具体阐述 ...

2018-06-10 19:29:41

阅读数:54

评论数:0

深度学习: CVPR会议

CVPR CVPR: International Conference on Computer Vision and Pattern Recognition。 每年一届,6月份开会。 Paper Searching 进入 CVPR 2018 官网 -> Progr...

2018-04-25 10:25:50

阅读数:201

评论数:0

深度学习: CV顶会 & CV顶刊

CV三大会议 CVPR: International Conference on Computer Vision and Pattern Recognition (每年,6月开会) ICCV: International Conference on Computer Vision (奇数年,1...

2018-04-25 10:13:06

阅读数:223

评论数:0

深度学习: 卷积核 为什么都是 奇数size

卷积核一般都把size设为奇数,主要有以下两个原因: 保证了锚点刚好在中间,方便以模块中心为标准进行滑动卷积。 保证了padding时,图像的两边依然相对称。 [1] 为什么CNN中的卷积核size一般都是奇数...

2018-04-24 18:45:04

阅读数:319

评论数:0

深度学习: global pooling (全局池化)

今天看SPPNet论文时,看到“global pooling”一词,不是很明白是啥概念。上网查了一下定义,在StackOverflow 上找到了答案: 具体回答如下: 说白了,“global pooling”就是pooling的 滑窗size 和整张feature map的size一...

2018-04-24 14:53:19

阅读数:663

评论数:0

深度学习: 从YOLOv1到YOLOv3

Introduction 从YOLOv1到YOLOv3,YOLO系独树一帜,自成一派,是检测算法领域的一股清流。 YOLOv1 论文地址:You Only Look Once: Unified, Real-Time Object Detection 是one-stage系检测算法的鼻祖...

2018-04-22 15:48:18

阅读数:244

评论数:0

深度学习: one-stage/two-stage/multi-stage 目标检测算法

Introduction detector主要分为以下两大门派: - one stage系 two stage系 代表性算法 YOLOv1、SSD、YOLOv2、YOLOv3、RetinaNet R-CNN、SPPNet、Fast R-CNN、Faster ...

2018-04-22 15:04:52

阅读数:162

评论数:0

深度学习: ILSVRC竞赛

Large Scale Visual Recognition Challenge (ILSVRC): - ILSVR 全称 ImageNet Large Scale Visual Recognition Competition 举办单位 ImageNe...

2018-04-21 10:15:22

阅读数:280

评论数:0

深度学习: COCO目标检测测评指标

以下为COCO数据集目标检测的测评指标: 我们看论文时常见的AP50AP50AP^{50}、AP75AP75AP^{75}便是来源于此: 需要注意的是,在COCO数据集评价指标中,所有的AP 默认为mAP 。即,AP50=mAP50AP50=mAP50AP^{50}=mAP^{50},...

2018-04-19 15:28:23

阅读数:349

评论数:0

深度学习: 检测算法演进

演进时间轴

2018-04-09 08:47:09

阅读数:49

评论数:0

深度学习: Jacobian矩阵 & Hessian矩阵

Jacobian Jacobian矩阵: Hessian Hessian矩阵: Hessian矩阵往往具有对称性。 [1] Functions - Gradient, Jacobian and Hessian [2] Deep Learning Book

2018-04-07 17:45:03

阅读数:55

评论数:0

深度学习: 分类 目标函数 (交叉熵误差(CE) -> 焦点损失(FL))

Introduction Note: MSE、CE与FL 均为分类任务的目标函数。 MSE 均方误差(Mean Squared Error,MSE)。 流行于8、90年代,其设计如下: MSE(ŷ&nbs...

2018-04-07 17:24:44

阅读数:359

评论数:0

深度学习: 鞍点

Introduction 关于 鞍点 的定义: [1]: 鞍点附近的某些点比鞍点有更大的代价,而其他点则有更小的代价。 [2]: 一个不是局部极值点的驻点称为鞍点。 Example 单变量函数: 鞍点处的一阶导为0,二阶导换正负号。 多变量...

2018-04-03 12:56:10

阅读数:61

评论数:0

深度学习: 处理不平衡样本

Introduction 不平衡样本: 训练样本中 各类别间 数量差距较大。 易导致过拟合,影响在 极端测试集 (量少类样本居多) 上的 泛化能力 。 对不平衡样本的处理手段主要分为两大类:数据层面 (简单粗暴)、算法层面 (复杂) 。 Note: 为了简明扼要,以下称 量少的...

2018-02-03 21:40:13

阅读数:1601

评论数:0

深度学习: 迁移学习 (Transfer Learning)

Introduction 把别处学得的知识,迁移到新场景的能力,就是“迁移学习”。 具体在实践中体现为: 将 A任务上 预训练好的模型 放在B任务上,加上少量B任务训练数据,进行微调 。 与传统学习的比较 传统学习中,我们会给不同任务均提供足够的数据,以分别训练出不同的模...

2018-02-03 20:19:13

阅读数:376

评论数:0

深度学习: 模型优化算法

优化算法 类型 优化算法 类型 包括 一阶优化法 和 二阶优化法: 一阶优化法 二阶优化法 具体算法 随机梯度下降法、基于动量的随机梯度下降法、Nesterov型动量随机下降法、Adagrad法、Adadelta法、RMSProp法、Adam法 ...

2018-02-03 19:46:47

阅读数:318

评论数:0

深度学习: 如何训练网络

Introduction 目的: 快速 有效 地 拟合 。 手段: 随机批处理、学习率、批规范化、模型优化算法、迁移学习。 随机批处理 随机批处理,mini-batch,一种 在模型每轮 (epoch) 训练进行前将训练数据集随机打乱 (shuffle) 的 训练机制。 可以...

2018-02-03 15:38:03

阅读数:332

评论数:0

深度学习: 学习率 (learning rate)

Introduction 学习率 (learning rate),控制 模型的 学习进度 : 学习率大小 学习率 大 学习率 小 学习速度 快 慢 使用时间点 刚开始训练时 一定轮数过后 副作用 1.易损失值爆炸;2....

2018-02-02 22:31:40

阅读数:2213

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭