leetcode-旋转数组的最小数字

本文探讨了寻找旋转数组中最小数字的三种方法:顺序搜索、二分查找及分治法,对比了它们的时间与空间复杂度,并提供了JAVA与Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 题目来自LeetCode,链接:面试题11. 旋转数组的最小数字。具体描述:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。

 示例1:

输入:[3,4,5,1,2]
输出:1

 示例2:

输入:[2,2,2,0,1]
输出:0

 首先最简单的当然是顺序搜索,遍历数组,找到第一个比其前面数小的就是要找的结果。时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1)

 JAVA版代码如下:

class Solution {
    public int minArray(int[] numbers) {
        for (int i = 1; i < numbers.length; ++i) {
            if (numbers[i] < numbers[i - 1]) {
                return numbers[i];
            }
        }
        return numbers[0];
    }
}

 提交结果如下:


 然后就是二分查找,不过因为有相同数字的存在,显得判断麻烦了点。需要根据中间数与左右两边数的大小关系决定下一步,如果三者相等就只好退化为线性查找了,而三者是递增关系的话就可以直接返回最左数字,否则说明左边数大于中间数(这时最小数只能在中间与右边数之间这一段)或中间数大于右边数(这时最小数只能在左边与中间数之间这一段)。时间复杂度为 O ( l o g n ) O(logn) O(logn)(极端情况退化为 O ( n ) O(n) O(n)),空间复杂度为 O ( 1 ) O(1) O(1)

 JAVA版代码如下:

class Solution {
    public int minArray(int[] numbers) {
        int left = 0, right = numbers.length - 1;
        while (left < right) {
            if (left == right - 1) {
                return Math.min(numbers[left], numbers[right]);
            }
            int middle = left + (right - left) / 2;
            if (numbers[left] == numbers[middle] && numbers[middle] == numbers[right]) {
                for (int i = left + 1; i <= right; ++i) {
                    if (numbers[i] < numbers[i - 1]) {
                        return numbers[i];
                    }
                }
                return numbers[left];
            }
            if (numbers[left] <= numbers[middle] && numbers[middle] <= numbers[right]) {
                return numbers[left];
            }
            if (numbers[left] > numbers[middle]) {
                right = middle;
            }
            else {
                left = middle;
            }
        }
        return numbers[0];
    }
}

 提交结果如下:


 最后是分治法,根据中间数与右边数的大小关系缩小区间:

  • 中间数大于右边数:说明最小数肯定在中间数到右边数之间,直接把左边界移动到当前中间数的位置;
  • 中间数等于右边数:无法确定最小数在哪个区间,但可以肯定不会比右边数大,所以可以左移右边界;
  • 中间数小于右边数:说明最小数肯定在左边数到中间数之间,直接把右边界移动到中间位置。

 时间复杂度为 O ( l o g n ) O(logn) O(logn)(极端情况退化为 O ( n ) O(n) O(n),即所有数相等的情况),空间复杂度为 O ( 1 ) O(1) O(1)

 JAVA版代码如下:

class Solution {
    public int minArray(int[] numbers) {
        int left = 0, right = numbers.length - 1;
        while (left < right) {
            if (left == right - 1) {
                return Math.min(numbers[left], numbers[right]);
            }
            int middle = left + (right - left) / 2;
            if (numbers[middle] > numbers[right]) {
                left = middle;
            }
            else if (numbers[middle] < numbers[right]) {
                right = middle;
            }
            else {
                --right;
            }
        }
        return numbers[0];
    }
}

 提交结果如下:


 Python版代码如下:

class Solution:
    def minArray(self, numbers: List[int]) -> int:
        left, right = 0, len(numbers) - 1
        while left < right:
            if left == right - 1:
                return min(numbers[left], numbers[right])
            middle = left + (right - left) // 2
            if numbers[middle] > numbers[right]:
                left = middle
            elif numbers[middle] < numbers[right]:
                right = middle
            else:
                right -= 1
        return numbers[0]

 提交结果如下:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值