flink中DataStreamAPI的一些基础总结(环境和源算子) 文章目录前言一、执行环境。1.1创建执行环境1.2 执行模式1.3 触发程序执行二、源算子(source)1.读取数据的方式1.1从集合中读取数据1.2 从文件读数据1.3从Socket读取数据1.4从kafka读取数据1.5自定义source总结前言flink程序的数据流api处理:一个Flink程序就是对DataStream API的各种转换。分为几部分:1.获取执行环境(esecution environment)2.读取数据源(source)3.定义基于数据的转换操作(transfor
【无标题】 学习目标:总结几点Hive的一些知识点学习内容:hive源数据为何不放在内置derby数据库中?一般会使用mysql作为源数据存储,内置的数据库主要是并发性能差,可以理解为单线程操作Hive中的四种排序order by 属于全局排序,只有一个reducesort by 设置的reduce Task 大于1,只在每个输出reducer进行排序,不保证全局排序distribute by 通常与sort by结合使用, 比如说对同一年份的温度进行排序,distribute by
高性能时序数据库---DolphinDB(上) 愿 君 终 如 月 , 淡 然 撒 清 辉DolphinDB数据库-------量化金融和物联网的典型应用,计算K线,进行机器学习,加密货币交易数据,流计算引擎,实时计算高频因子等等