CSDN-markdown编辑器试用

技术学习笔记
这是一个关于技术学习的综合笔记,涵盖了Python、C++、数据结构、数据库和机器学习等领域的知识点记录和应用实践,旨在通过写作巩固知识,便于日后查阅。

第一次使用markdown编辑器

用它做什么

以前的一些笔记内容各处存放,很容易丢失,现在来试一试写博客记录,方便自己查找。
输出也是一种巩固的方式嘛,希望能够坚持

可能会有的内容

matlab

画图过程中各种设置,平时经常使用的函数等等

Python

学习记录,应用记录

数据库

知识点记录,应用记录。

C++

现在才开始学C++,真是… 就记一些重点和学习内容吧

数据结构

这是计算机基础课,现在不管做什么都得懂,还是得记一记

机器学习相关理论

各处都要用啊,赶紧回顾学习起来

题目

可能会做一些题?先备用吧

测试一下如何插入一段代码

// import matplotlib
def func():
print("Hello~")

正在进行的

  • 数据库
  • python语法回顾复习
  • 数据结构
  • 用Django搭建一个网站

创建一个表格

目前对我来说各项重要程度

内容星级
Python5
C++4 (先了解一下)
数据结构5
数据库4
机器学习理论4.5

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

看来默认是居中的

创建一个自定义列表(做什么的?)

Markdown
Text-to-HTML conversion tool
Authors
John
Shawn

注释

就是指鼠标停留显示的注释,换行用 *[注释内容]。

还有什么

边用边查吧,试用就到这。

内容概要:本文详细介绍了一个基于Python实现的GA-BP遗传算法优化BP神经网络的项目,旨在对锂离子电池的健康状态(SOH)进行高精度估计。项目融合遗传算法(GA)的全局搜索能力与BP神经网络的非线性拟合优势,解决了传统BP网络易陷入局部最优、收敛慢的问题,显著提升了SOH预测的准确性与鲁棒性。内容涵盖数据生成、预处理、特征选择、GA优化流程、神经网络建模、模型评估与可视化,并提供了完整的代码实现和带有GUI的交互式应用程序,支持数据导入、模型预测、结果可视化及导出功能。整体架构模块化,具备良好的可扩展性与工程落地能力。; 适合人群:具备Python编程基础,熟悉机器学习与数据处理的高校学生、科研人员及从事新能源、电池管理、智能预测等领域的工程师和技术人员。; 使用场景及目标:①应用于新能源汽车、储能系统、消费电子等领域中的电池健康状态在线监测与寿命预测;②用于教学与科研中理解遗传算法与神经网络的融合机制,掌握SOH估算的技术路径与实现方法;③作为智能预测系统的开发模板,支持二次开发与工程部署。; 阅读建议:建议读者结合文档中的代码逐模块运行与调试,重点关注GA优化BP网络的参数传递机制、数据预处理流程及GUI界面与模型的交互逻辑。在实践过程中可替换实际电池数据进行验证,并尝试调整GA与BP的超参数以优化性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值