elasticsearch全局检索多分词器匹配

elasticsearch全局检索多分词器匹配

在es全局检索的需求中,需要进行多个分词器同时匹配关键词,例如:在商品名称、品牌名称和类目名称中匹配含有“西”关键字的查询结果,当一个字段匹配时即加入查询结果用sql语句表达为:select  *  from  item where item_name like '%西%' or brand_name like '%西%' or c_name like '%西%'

其中item_name,brand_name,c_name分别商品名称、品牌名称和类目名称。

这个简单的需求在es中却实现比较困难,原因是es在索引数据时会针对字段内容进行分词,下面列出es几种分词器的特性

1)standard分词器

      es默认的分词器,对中文支持不友好,会将中文分成单字,这样在查询多个汉字时就匹配不到doc,所以针对中文字段可使用ik。

2)ik分词器

      需要单独安装ik插件,有ik_smart和ik_max_word两种分词粒度,其中ik_max_word粒度更细,但如果ik识别不出的词,就不会分出。

      导致上边的全局检索例子查询“西”时匹配不到数据。

3)pinyin分词器

      需要安装插件,可支持拼音全拼、简拼和首字母查询。

鉴于以上分词器的特性,在全局检索时可能需要使用几种分词器同时工作,那这种需求该如何来处理呢?答案是使用multi_field

以下为multi_field的mapping:

{
        "item" : {
            "properties" : {
                "item_name" : {
                    "type" : "
multi_field",
                    "fields" : {
                        "item_name_ik" : {"type" : "string", "analyzer" :"ik"},
                        "item_name_not" : {"type" : "string", "index" : "not_analyzed"},
                        "item_name_standard" : {"type" : "string"}
                    }
                },
               "brand_name" : {
                    "type" : "multi_field",
                    "fields" : {
                        "brand_name_ik" : {"type" : "string", "analyzer" :"ik"},
                        "brand_name_not" : {"type" : "string", "index" : "not_analyzed"},
                        "brand_name_standard" : {"type" : "string"}
                    }
                },
                "c_name" : {
                    "type" : "multi_field",
                    "fields" : {
                        "c_name_ik" : {"type" : "string", "analyzer" :"ik"},
                        "c_name_not" : {"type" : "string", "index" : "not_analyzed"},
                        "c_name_standard" : {"type" : "string"}
                    }
                }
            }
        }
    }

每个需要查询的字段分别设置不同的分词器,查询时的json如下:

{"from" : 0,
  "size" : 20,
  "query" : {
    "
bool" : {
      "
should" : [ {
       
"fuzzy" : {
          "item_name.item_name_ik" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "item_name.item_name_not" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "item_name.item_name_standard" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "brand_name.brand_name_ik" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "brand_name.brand_name_not" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "brand_name.brand_name_standard" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "c_name.c_name_ik" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "c_name.c_name_not" : {
            "value" : "西"
          }
        }
      }, {
        "fuzzy" : {
          "c_name.c_name_standard" : {
            "value" : "西"
          }
        }
      } ]
    }
  }
}

这样就会针对所有分词的情况,查询到含有关键字“西”的文档,如果觉得这样写的结构比较麻烦,也可使用multi_match

如下:

{
  "
multi_match" : {
    "query" : "西",
    "fields" : [ "brand_name.brand_name_standard", "item_name.item_name_standard", "c_name.c_name_standard" ....]
  }
}

另外:

使用client客户端api可根据字段名获取到mapping信息,例如可根据item_name名字找到它下边的c_name_standard等名称

这样在可简化查询条件的构建,代码如下:

//查询item_name下的fileds设置,遍历出各fields的名字放入list

List<String> list = new ArrayList<String>();
String fieldName = "item_name";
GetFieldMappingsRequest fieldMappingsRequest = new GetFieldMappingsRequest().indices(index).types(type).fields(fieldName);
GetFieldMappingsResponse responseActionFuture = client.admin().indices().getFieldMappings(fieldMappingsRequest).actionGet();
GetFieldMappingsResponse.FieldMappingMetaData fieldMappingMetaData = responseActionFuture.fieldMappings(index,type,fieldName);
Object field = fieldMappingMetaData.sourceAsMap().get(fieldName);
if(field == null){
    return list;
}
Map<String, Object> fieldsMap = (Map)((Map)field).get("fields");
if(fieldsMap == null){
    return list;
}else{
    Iterator<Map.Entry<String, Object>> entries = fieldsMap.entrySet().iterator();
    while (entries.hasNext()) {
        Map.Entry<String, Object> entry = entries.next();
        System.out.println("Key = " + entry.getKey());
        list.add(entry.getKey());
    }
}
//构建查询条件
SearchRequestBuilder builder = client.prepareSearch(index).setTypes(type);
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
for(String field : list){
    boolQueryBuilder.should(QueryBuilders.fuzzyQuery(query.getKey() + "." +field, query.getValue()));
}
builder.setQuery(boolQueryBuilder);
SearchResponse searchResponse = builder.execute().actionGet();
SearchHits hits = searchResponse.getHits();


转载地址:点击打开链接

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭