CCITT CRC-16计算原理与实现

CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。

差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。

利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。


 

1 代数学的一般性算法

在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。

设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。

发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为
T(x)=xrP(x)+R(x)

接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。

举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为
      xrP(x)     x3(x3+x2)     x6+x5                    x
     -------- = ---------- = -------- = (x3+x2+x) + --------
       G(x)       x3+x+1      x3+x+1                 x3+x+1

即 R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。

如果用竖式除法,计算过程为
               1110
            -------  
      1011 /1100000     (1100左移3位)
            1011
            ----
             1110
             1011
             -----
              1010
              1011
              -----
               0010
               0000
               ----
                010

因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010

如果传输无误,
       T(x)     x6+x5+x
      ------ = --------- = x3+x2+x,
       G(x)     x3+x+1

无余式。回头看一下上面的竖式除法,如果被除数是1100010,显然在商第三个1时,就能除尽。

上述推算过程,有助于我们理解CRC的概念。但直接编程来实现上面的算法,不仅繁琐,效率也不高。实际上在工程中不会直接这样去计算和验证CRC。

下表中列出了一些见于标准的CRC资料:
 名称  
 生成多项式  
 简记式*  
 应用举例

 CRC-4  
 x4+x+1  
   
 ITU G.704

 CRC-12  
 x12+x11+x3+x+1  
   
 

 CRC-16  
 x16+x12+x2+1  
 1005  
 IBM SDLC

 CRC-ITU**  
 x16+x12+x5+1  
 1021  
 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS

 CRC-32  
 x32+x26+x23+...+x2+x+1  
 04C11DB7  
 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS

 CRC-32c  
 x32+x28+x27+...+x8+x6+1  
 1EDC6F41  
 SCTP

    *  生成多项式的最高幂次项系数是固定的1,故在简记式中,将最高的1统一去掉了,
如04C11DB7实际上是104C11DB7。
    ** 前称CRC-CCITT。ITU的前身是CCITT。

 

4.CRC算法的实现
---------------
要用程序实现CRC算法,考虑对第2节的长除法做一下变换,依然是M = 11100110,G = 1011,
其系数r为3。
                       
                 11001100                 
         ------------------------             
1011 )11100110000                
          1011.......                      
          ----.......                         
           1010......                    
           1011......      
           ----......                
                 1110...                 
                 1011...                    
                 ------...                     
                   1010..                  
                   1011..                   
                   -------                      
                     100  <---校验码      
                          
程序可以如下实现:
    1)将Mx^r的前r位放入一个长度为r的寄存器;
    2)如果寄存器的首位为1,将寄存器左移1位(将Mx^r剩下部分的MSB移入寄存器的LSB),
      再与G的后r位异或,否则仅将寄存器左移1位(将Mx^r剩下部分的MSB移入寄存器的LSB);
    3)重复第2步,直到M全部Mx^r移入寄存器;
    4)寄存器中的值则为校验码。    

基于以上算法,我们可以看一下上面例子的程序计算过程:(r=3)

      首先,111 00110000前三位进入寄存器,即111

       这时寄存器首位为1,执行第2步,移位成110 0110000,这时寄存器中为前三位110,将其与011(生成多项式后三位)异或,得101 0110000.

        然后继续第2步,101首位为1,移位010 110000,然后010与011异或,得  001 110000
前面两个0,连续以为2次且不用计算异或,得111 0000,接着移位110 000,异或得101 000
       第一位为1,移位得010 00,前三位异或得001 00

       最后因为前面两个0,直接移位两次后得寄存器中的内容100,这时Mx^r位的所有内容都移入寄存器,运算结束,记得检验码为100。(关键先判断首位是否为1,然后移位,然后计算)

         111 00110000移位->1 110 0110000
                                                011
                                                101 0110000  -->101第一位为1,移位且计算
                                                1 010 110000
                                                   011
                                                   001 110000-->001第一位第二位均为0,移位2次
                                                   00 111 0000-->111第一位为1,移位且计算
                                                        1 110 000
                                                           011
                                                           101 000-->101第一位为1,移位且计算
                                                           1 010 00
                                                              011
                                                              001 00-->移位2次得100
用CRC16-CCITT的生成多项式0x1021,其C代码(本文所有代码假定系统为32位,且都在VC6上编译通过)如下:

unsigned short do_crc(unsigned char *message, unsigned int len)
{
    int i, j;
    unsigned short crc_reg;
       
    crc_reg = (message[0] << 8) + message[1];
    for (i = 0; i < len; i++)
    {
        if (i < len - 2)
            for (j = 0; j <= 7; j++)
            {
                if ((short)crc_reg < 0)
                    crc_reg = ((crc_reg << 1) + (message[i + 2] >> (7 - i))) ^ 0x1021;
                else
                    crc_reg = (crc_reg << 1) + (message[i + 2] >> (7 - i));     
            }
         else
            for (j = 0; j <= 7; j++)
            {
                if ((short)crc_reg < 0)
                    crc_reg = (crc_reg << 1) ^ 0x1021;
                else
                    crc_reg <<= 1;            
            }        
    }
    return crc_reg;

显然,每次内循环的行为取决于寄存器首位。由于异或运算满足交换率和结合律,以及与0异或无影响,消息可以不移入寄存器,而在每次内循环的时候,寄存器首位再与对应的消息位异或。改进的代码如下:

unsigned short do_crc(unsigned char *message, unsigned int len)
{
    int i, j;
    unsigned short crc_reg = 0;
    unsigned short current;
       
    for (i = 0; i < len; i++)
    {
        current = message[i] << 8;
        for (j = 0; j < 8; j++)
        {
            if ((short)(crc_reg ^ current) < 0)
                crc_reg = (crc_reg << 1) ^ 0x1021;
            else
                crc_reg <<= 1;
            current <<= 1;           
        }
    }
    return crc_reg;
}

以上的讨论中,消息的每个字节都是先传输MSB,CRC16-CCITT标准却是按照先传输LSB,消息右移进寄存器来计算的。只需将代码改成判断寄存器的LSB,将0x1021按位颠倒后(0x8408)与寄存器异或即可,如下所示:

unsigned short do_crc(unsigned char *message, unsigned int len)
{
    int i, j;
    unsigned short crc_reg = 0;
    unsigned short current;
       
    for (i = 0; i < len; i++)
    {
        current = message[i];
        for (j = 0; j < 8; j++)
        {
            if ((crc_reg ^ current) & 0x0001)
                crc_reg = (crc_reg >> 1) ^ 0x8408;
            else
                crc_reg >>= 1;
            current >>= 1;           
        }
    }
    return crc_reg;
}   

该算法使用了两层循环,对消息逐位进行处理,这样效率是很低的。为了提高时间效率,通常的思想是以空间换时间。考虑到内循环只与当前的消息字节和crc_reg的低字节有关,对该算法做以下等效转换:

unsigned short do_crc(unsigned char *message, unsigned int len)
{
    int i, j;
    unsigned short crc_reg = 0;
    unsigned char  index;
    unsigned short to_xor;
      
    for (i = 0; i < len; i++)
    {
        index = (crc_reg ^ message[i]) & 0xff;
        to_xor = index;      
        for (j = 0; j < 8; j++)
        {
            if (to_xor & 0x0001)
                to_xor = (to_xor >> 1) ^ 0x8408;
            else
                to_xor >>= 1;          
        }
        crc_reg = (crc_reg >> 8) ^ to_xor;
    }
    return crc_reg;
}

现在内循环只与index相关了,可以事先以数组形式生成一个表crc16_ccitt_table,使得to_xor = crc16_ccitt_table[index],于是可以简化为:

unsigned short do_crc(unsigned char *message, unsigned int len)
{
    unsigned short crc_reg = 0;
         
    while (len--)
        crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
       
    return crc_reg;
}  

crc16_ccitt_table通过以下代码生成:

int main()
{
    unsigned char index = 0;
    unsigned short to_xor;
    int i;

    printf("unsigned short crc16_ccitt_table[256] =/n{");
    while (1)
    {
        if (!(index % 8))
            printf("/n");
       
        to_xor = index;      
        for (i = 0; i < 8; i++)
        {
            if (to_xor & 0x0001)
                to_xor = (to_xor >> 1) ^ 0x8408;
            else
                to_xor >>= 1;          
        }           
        printf("0x%04x", to_xor);
       
        if (index == 255)
        {
            printf("/n");
            break;
        }
        else
        {
            printf(", ");
            index++;
        }
    }
    printf("};");
    return 0;
}

生成的表如下:

unsigned short crc16_ccitt_table[256] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};

这样对于消息unsigned char message[len],校验码为:
    unsigned short code = do_crc(message, len);
并且按以下方式发送出去:
    message[len] = code & 0x00ff;
    message[len + 1] = (code >> 8) & 0x00ff;
   
接收端对收到的len + 2字节执行do_crc,如果没有差错发生则结果应为0。

在一些传输协议中,发送端并不指出消息长度,而是采用结束标志,考虑以下几种差错:
    1)在消息之前,增加1个或多个0字节;
    2)消息以1个或多个连续的0字节开始,丢掉1个或多个0;
    3)在消息(包括校验码)之后,增加1个或多个0字节;
    4)消息(包括校验码)以1个或多个连续的0字节结尾,丢掉1个或多个0;
   
显然,这几种差错都检测不出来,其原因就是如果寄存器值为0,处理0消息字节(或位),寄存器值不变。为了解决前2个问题,只需寄存器的初值非0即可,对do_crc作以下改进:
 
unsigned short do_crc(unsigned short reg_init, unsigned char *message, unsigned int len)
{
    unsigned short crc_reg = reg_init;
         
    while (len--)
        crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
       
    return crc_reg;
}

在CRC16-CCITT标准中reg_init = 0xffff,为了解决后2个问题,在CRC16-CCITT标准中将计算出的校验码与0xffff进行异或,即:
    unsigned short code = do_crc(0xffff, message, len);
    code ^= 0xffff;
    message[len] = code & 0x00ff;
    message[len + 1] = (code >> 8) & 0x00ff;  
   
显然,现在接收端对收到的所有字节执行do_crc,如果没有差错发生则结果应为某一常值GOOD_CRC。其满足以下关系:
    unsigned char p[]= {0xff, 0xff};
    GOOD_CRC = do_crc(0, p, 2);
其结果为GOOD_CRC = 0xf0b8。

在同一程序中验证如下(放在main函数中可试验):

 unsigned char p[]= {0xa0,0xb0,0xff, 0xff};
    unsigned short crc;       
     crc= do_crc(0xffff, p, 2);  //计算前两位的CRC码
    crc^=0xffff;     //对其取反
    p[2]=crc&0x00ff;   //将计算的CRC码加到信息序列后面
    p[3]=crc>>8&0x00ff;
    printf("p[2]=%x,p3=%x/n",p[2],p[3]);
    crc=do_crc(0xffff,p,4);   //对信息码+CRC码共同计算得出CRC=0xf0b8
    printf("crc is %x/n",crc);
假设发送的信息是p[0],p[1];低位先发,对其计算的CRC加到信息码后面

然后对信息码+CRC码共同计算CRC值,此时应该是常数0xf0b8。不管信息码如何变化,内容和长度都可变,只要把计算的CRC码加进去一起计算CRC,就应该是得该常数GOOD_CRC。


参考文献
--------
[1] Ross N. Williams,"A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS",Version 3,
    http://www.ross.net/crc/crcpaper.html,August 1993
[2] Simpson, W., Editor, "PPP in HDLC Framing",RFC 1549, December 1993
[3] P. E. Boudreau,W. C. Bergman and D. R. lrvin,"Performance of a cyclic redundancy  check and its interaction with a data scrambler",IBM J. RES. DEVELOP.,VOL.38    NO.6,November 1994

### 回答1: CRC-16/CCITT是循环冗余校验(Cyclic Redundancy Check)的一种常见算法,它用于对数据进行检验,以确定数据是否在传输过程中发生错误。它的计算原理实现如下。 CRC-16/CCITT算法使用16位的校验码,它可以检测到多达2^16-1(65535)位错误。 CRC-16/CCITT计算是基于一个预设的生成多项式,在该算法中,该多项式被定义为0x1021(二进制为10001000000100001)。 算法实现过程如下: 1. 初始化一个16位的寄存器为全1(0xFFFF),这个寄存器用来保存计算后的校验码。 2. 从数据的最高位开始,逐位地将数据与寄存器的最高位进行异或操作(XOR),然后将寄存器向左移位一位。 3. 如果寄存器的最高位为1,则将寄存器与预设的生成多项式进行异或操作。 4. 继续将数据的下一位与寄存器的最高位进行异或操作,然后将寄存器向左移位一位。重复这个步骤,直到计算完整个数据。 5. 最后得到的寄存器的值就是CRC-16/CCITT的校验码。 在实际的数据传输中,发送方计算数据的CRC-16/CCITT校验码,并将校验码附加在数据的末尾一起发送给接收方。接收方收到数据后,再次计算数据的CRC-16/CCITT校验码,与接收到的校验码进行比较。如果两者相同,表示数据传输没有出错;如果不同,表示数据传输发生错误,需要进行重新传输。 总之,CRC-16/CCITT是一种简单且高效的校验算法,它可以帮助我们检测数据传输过程中的错误,并保证数据的完整性。 ### 回答2: CRC-16/CCITT是一种循环冗余校验码,用于检测数据传输中的错误。它是根据国际电报电话咨询委员会所制定的标准所确定的。 CRC-16/CCITT计算原理是将发送的数据按位划分为多个字节,并对每个字节进行处理。首先,需要定义一个生成多项式,用来进行CRC计算CRC-16/CCITT的生成多项式为x^16 + x^12 + x^5 + 1。 具体的实现步骤如下: 1. 初始化一个16位的寄存器为0xFFFF。 2. 将第一个字节与寄存器的低8位异或,然后将寄存器右移一位。 3. 如果最低位是1,则将寄存器与0xA001异或,否则不进行异或操作。 4. 重复第2步和第3步,直到处理完所有字节。 5. 最后得到的寄存器内的值就是CRC-16/CCITT的校验结果。 例如,如果要计算字符串"Hello"的CRC-16/CCITT校验码,可以按照如下步骤进行: 1. 将字符'H'转换为ASCII码,得到0x48。 2. 将0x48与0xFFFF异或,然后将寄存器右移一位,得到0x2400。 3. 由于最低位是0,因此不进行异或操作。 4. 重复上述步骤,依次处理剩下的字符。 5. 最终得到的CRC-16/CCITT校验码为0xF303。 通过计算CRC-16/CCITT校验码,我们可以在数据传输过程中检测出错误。如果接收方接收到的数据与计算得到的校验码不一致,就意味着数据可能被篡改或传输过程中出现错误。 ### 回答3: CRC-16/CCITT是一种用于数据传输中的差错检测方法,采用循环冗余校验(CRC算法,使用16位的校验和。它的计算原理实现如下。 首先,将要传输的数据按位进行排列,最高位作为第一个比特位,最低位作为最后一个比特位。接着,定义一个初始值为0xFFFF的寄存器,用于存储即将进行校验的数据。 然后,按照以下步骤进行计算和校验: 1. 将第一个比特位输入到寄存器中。 2. 如果寄存器最高位为1,则进行一次异或运算,结果与0x1021进行按位异或。 3. 将寄存器中所有比特位向右移动一位,即除以2,并舍弃最低位。 4. 重复步骤2和3,直到所有的比特位都输入到寄存器中。 当所有比特位输入完毕后,计算得到的寄存器的值就是CRC-16/CCITT的校验和。将该校验和附加在原始数据后面,一起进行传输。 在接收端,接收到数据后,也按照同样的方式进行计算。如果计算得到的校验和与接收到的校验和相同,说明数据在传输过程中没有发生错误;如果不同,则说明数据发生了错误。 CRC-16/CCITT具有快速计算的特点,适用于大部分数据传输场景。它可以有效检测出传输中的错误,并能够根据校验和进行纠错。实际实现时,可以使用位操作和异或运算来进行高效的计算。 总结起来,CRC-16/CCITT是一种通过对数据进行位操作和异或运算得到校验和的差错检测方法,能够有效检测传输中的错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值