hive
1-hive简介
-
1.1什么是 Hive
- Hive 由 Facebook 实现并开源,是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能,底层数据是存储在 HDFS 上。
- Hive 本质: 将 SQL 语句转换为 MapReduce 任务运行,使不熟悉 MapReduce 的用户很方便地利用 HQL 处理和计算 HDFS 上的结构化的数据,是一款基于 HDFS 的 MapReduce 计算框架
- 主要用途:用来做离线数据分析,比直接用 MapReduce 开发效率更高。
-
1.2为什么使用 Hive
- 直接使用 Hadoop MapReduce 处理数据所面临的问题:
- 人员学习成本太高
- MapReduce 实现复杂查询逻辑开发难度太大
- 使用 Hive
- 操作接口采用类 SQL 语法,提供快速开发的能力
- 避免了去写 MapReduce,减少开发人员的学习成本
功能扩展很方便
- 直接使用 Hadoop MapReduce 处理数据所面临的问题:
2-Hive 架构
Hive 架构图

Hive 组件
- 用户接口:包括 CLI、JDBC/ODBC、WebGUI。
- CLI(command line interface)为 shell 命令行
- JDBC/ODBC 是 Hive 的 JAVA 实现,与传统数据库JDBC 类似,通过Thrift Server, 允许远程客户端使用多种编程语言如Java、Python向Hive提交请求
- Web UI 是通过浏览器访问 Hive。
- 元数据存储:通常是存储在关系数据库如 mysql/derby 中。
- Hive 将元数据存储在数据库中。
- Hive 中的元数据包括
- 表的名字
- 表的列
- 分区及其属性
- 表的属性(是否为外部表等)
- 表的数据所在目录等。
- 解释器、编译器、优化器、执行器:完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后由 MapReduce 调用执行
Hive 与 Hadoop 的关系-
Hive 利用 HDFS 存储数据,利用 MapReduce 查询分析数据。
-
Hive是数据仓库工具,没有集群的概念,如果想提交Hive作业只需要在hadoop集群 Master节点上装Hive就可以了
-
3- Hive 与传统数据库异同
- hive 用于海量数据的离线数据分析。

- hive支持的数据类型
- 原子数据类型
- TINYINT SMALLINT INT BIGINT BOOLEAN FLOAT DOUBLE STRING BINARY TIMESTAMP DECIMAL CHA

Hive是由Facebook开发的数据仓库工具,基于Hadoop,用于离线数据分析。它提供类SQL查询语言HQL,简化了MapReduce的开发。Hive架构包括用户接口、元数据存储、解释器、编译器等组件。与传统数据库相比,Hive更适合海量数据的处理,支持原子和复杂数据类型,以及托管表和外部表。Hive数据存储在HDFS中,安装部署需要先安装JDK和Hadoop,并配置元数据存储。
最低0.47元/天 解锁文章
1774

被折叠的 条评论
为什么被折叠?



