Spark Streaming性能调优

一、 数据接收并行度调优 
1、通过网络接收数据时(比如Kafka、Flume),会将数据反序列化,并存储在Spark的内存中。如果数据接收称为系统的瓶颈,那么可以考虑并行化数据接收。每一个输入DStream都会在某个Worker的Executor上启动一个Receiver,该Receiver接收一个数据流。因此可以通过创建多个输入DStream,并且配置它们接收数据源不同的分区数据,达到接收多个数据流的效果。比如说,一个接收两个Kafka Topic的输入DStream,可以被拆分为两个输入DStream,每个分别接收一个topic的数据。这样就会创建两个Receiver,从而并行地接收数据,进而提升吞吐量。 
多个DStream可以使用union算子进行聚合,从而形成一个DStream。然后后续的transformation算子操作都针对该一个聚合后的DStream即可。 
val numStreams = 5 
val kafkaStreams = (1 to numStreams).map { i => KafkaUtils.createStream(…) } 
val unifiedStream = streamingContext.union(kafkaStreams) 
unifiedStream.print() 
2、数据接收并行度调优,除了创建更多输入DStream和Receiver以外,还可以考虑调节block interval。通过参数,spark.streaming.blockInterval,可以设置block interval,默认是200ms。对于大多数Receiver来说,在将接收到的数据保存到Spark的BlockManager之前,都会将数据切分为一个一个的block。而每个batch中的block数量,则决定了该batch对应的RDD的partition的数量,以及针对该RDD执行transformation操作时,创建的task的数量。 
每个batch对应的task数量大约是:batch interval / block interval。 
例如说,batch interval为2s,block interval为200ms,会创建10个task。如果你认为每个batch的task数量太少,即低于每台机器的cpu core数量,那么就说明batch的task数量是不够的,因为所有的cpu资源无法完全被利用起来。要为batch增加block的数量,那么就减小block interval。然而,推荐的block interval最小值是50ms,如果低于这个数值,那么大量task的启动时间,可能会变成一个性能开销点。 
3、除了上述说的两个提升数据接收并行度的方式,还有一种方法,就是显式地对输入数据流进行重分区。使用inputStream.repartition()即可。这样就可以将接收到的batch分布到指定数量的机器上,然后再进行进一步的操作。 
二、任务启动调优 
如果每秒钟启动的task过于多,比如每秒钟启动50个,那么发送这些task去Worker节点上的Executor的性能开销会比较大,而且此时基本就很难达到毫秒级的延迟了。使用下述操作可以减少这方面的性能开销: 
1、Task序列化:使用Kryo序列化机制来序列化task,可以减小task的大小,从而减少发送这些task到各个Worker节点上的Executor的时间。 
2、执行模式:在Standalone模式下运行Spark,可以达到更少的task启动时间。 
上述方式,可以将每个batch的处理时间减少100毫秒。从而从秒级降到毫秒级。 
三、数据处理并行度调优 
如果在计算的任何stage中使用的并行task的数量没有足够多,那么集群资源是无法被充分利用的。举例来说,对于分布式的reduce操作,比如reduceByKey和reduceByKeyAndWindow,默认的并行task的数量是由spark.default.parallelism参数决定的。你可以在reduceByKey等操作中,传入第二个参数,手动指定该操作的并行度,也可以调节全局的spark.default.parallelism参数。 
四、数据序列化调优 
数据序列化造成的系统开销可以由序列化格式的优化来减小。在流式计算的场景下,有两种类型的数据需要序列化。 
1、输入数据:默认情况下,接收到的输入数据,是存储在Executor的内存中的,使用的持久化级别是StorageLevel.MEMORY_AND_DISK_SER_2。这意味着,数据被序列化为字节从而减小GC开销,并且会复制以进行executor失败的容错。因此,数据首先会存储在内存中,然后在内存不足时会溢写到磁盘上,从而为流式计算来保存所有需要的数据。这里的序列化有明显的性能开销——Receiver必须反序列化从网络接收到的数据,然后再使用Spark的序列化格式序列化数据。 
2、流式计算操作生成的持久化RDD:流式计算操作生成的持久化RDD,可能会持久化到内存中。例如,窗口操作默认就会将数据持久化在内存中,因为这些数据后面可能会在多个窗口中被使用,并被处理多次。然而,不像Spark Core的默认持久化级别,StorageLevel.MEMORY_ONLY,流式计算操作生成的RDD的默认持久化级别是StorageLevel.MEMORY_ONLY_SER ,默认就会减小GC开销。

在上述的场景中,使用Kryo序列化类库可以减小CPU和内存的性能开销。使用Kryo时,一定要考虑注册自定义的类,并且禁用对应引用的tracking(spark.kryo.referenceTracking)。

在一些特殊的场景中,比如需要为流式应用保持的数据总量并不是很多,此时可以将数据以非序列化的方式进行持久化,从而减少序列化和反序列化的CPU开销,而且又不会有太昂贵的GC开销。举例来说,如果你数秒的batch interval,并且没有使用window操作,那么你可以考虑通过显式地设置持久化级别,来禁止持久化时对数据进行序列化。这样就可以减少用于序列化和反序列化的CPU性能开销,并且不用承担太多的GC开销。 
五、batch interval调优(最重要) 
如果想让一个运行在集群上的Spark Streaming应用程序可以稳定,它就必须尽可能快地处理接收到的数据。换句话说,batch应该在生成之后就尽可能快地处理掉。对于一个应用来说,这个是不是一个问题,可以通过观察Spark UI上的batch处理时间来定。batch处理时间必须小于batch interval时间。

基于流式计算的本质,batch interval对于在固定集群资源条件下,应用能保持的数据接收速率会有巨大的影响。例如,在WordCount例子中,对于一个特定的数据接收速率,应用业务可以保证每2秒打印一次单词计数,而不是每500ms。因此batch interval需要被设置得,让预期的数据接收速率可以在生产环境中保持住。

为你的应用计算正确的batch大小的比较好的方法,是在一个很保守的batch interval中,比如5~10s,以很慢的数据接收速率进行测试。要检查应用是否跟得上这个数据速率,可以检查每个batch的处理时间的延迟,如果处理时间与batch interval基本吻合,那么应用就是稳定的。否则,如果batch调度的延迟持续增长,那么就意味应用无法跟得上这个速率,也就是不稳定的。因此你要想有一个稳定的配置,可以尝试提升数据处理的速度,或者增加batch interval。记住,由于临时性的数据增长导致的暂时的延迟增长,可以是合理的,只要延迟情况可以在短时间内恢复即可。 
六、 内存调优 
优化Spark应用的内存使用和GC行为,这里说一下与Spark Streaming应用相关的调优参数。 
Spark Streaming应用需要的集群内存资源,是由使用的transformation操作类型决定的。举例来说,如果想要使用一个窗口长度为10分钟的window操作,那么集群就必须有足够的内存来保存10分钟内的数据。如果想要使用updateStateByKey来维护许多key的state,那么你的内存资源就必须足够大。反过来说,如果想要做一个简单的map-filter-store操作,那么需要使用的内存就很少。

通常来说,通过Receiver接收到的数据,会使用StorageLevel.MEMORY_AND_DISK_SER_2持久化级别来进行存储,因此无法保存在内存中的数据会溢写到磁盘上。而溢写到磁盘上会降低应用的性能。因此,通常是建议为应用提供它需要的足够的内存资源。建议在一个小规模的场景下测试内存的使用量,并进行评估。 
内存调优的另外一个方面是垃圾回收。对于流式应用来说,如果要获得低延迟,肯定不想因为JVM垃圾回收导致的长时间延迟。有很多参数可以帮助降低内存使用和GC开销: 
1、DStream的持久化:正如在“数据序列化调优”中提到的,输入数据和某些操作生产的中间RDD,默认持久化时都会序列化为字节。与非序列化的方式相比,这会降低内存和GC开销。使用Kryo序列化机制可以进一步减少内存使用和GC开销。进一步降低内存使用率,可以对数据进行压缩,由spark.rdd.compress参数控制(默认false)。 
2、清理旧数据:默认情况下,所有输入数据和通过DStream transformation操作生成的持久化RDD会自动被清理。Spark Streaming决定何时清理这些数据,取决于transformation操作类型。例如,你在使用窗口长度为10分钟内的window操作,Spark会保持10分钟以内的数据,时间过了以后就会清理旧数据。但是在某些特殊场景下,比如Spark SQL和Spark Streaming整合使用时,在异步开启的线程中,使用Spark SQL针对batch RDD进行执行查询,那么就需要让Spark保存更长时间的数据,直到Spark SQL查询结束,可以使用streamingContext.remember()方法来实现。 
3、并发垃圾回收策略:使用并行的mark-sweep垃圾回收机制,被推荐使用,用来保持GC低开销。虽然并行的GC会降低吞吐量,但是还是建议使用它,来减少batch的处理时间(降低处理过程中的gc开销)。如果要使用,那么要在driver端和executor端都开启。 
在spark-submit中使用–driver-java-options设置; 
使用spark.executor.extraJavaOptions参数设置,-XX:+UseConcMarkSweepGC。
————————————————
版权声明:本文为CSDN博主「霄嵩」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/accptanggang/article/details/79506898

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本项目经测试过,真实可靠,请放心下载学习。这两个技术在大数据处理和Java Web开发中扮演着重要的角色。在此次总结中,我将回顾我所学到的内容、遇到的挑战和取得的进展。 首先,我开始了对Spark的学习。Spark是一个强大的分布式计算框架,用于处理大规模数据集。通过学习Spark,我了解了其基本概念和核心组件,如RDD(弹性分布式数据集)、Spark SQL、Spark Streaming和MLlib等。我学会了使用Spark编写分布式的数据处理程序,并通过调优技巧提高了程序的性能。在实践过程中,我遇到了一些挑战,比如调试复杂的数据流转和处理逻辑,但通过查阅文档和与同学的讨论,我成功地克服了这些困难。最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解了其核心思想和基本原理,以及如何构建RESTful Web服务、使用数据库、进行事务管理等。我学会了使用Spring Boot快速搭建Java Web应用程序,并且能够运用Spring Boot的特性来简化开发流程。在学习的过程中,我遇到了一些挑战,比如配置文件的理解和注解的正确使用,但通过查阅官方文档和阅读相关书籍,我逐渐解决了这些问题。最终,我能够独立地使用Spring Boot开发Web应用程序,并运用其优秀的特性提高了开发效率。 总结来说,本学期我在Spark和Spring Boot方面取得了一定的进展。通过学习Spark,我掌握了分布式数据处理的基本原理和技巧,并通过实践应用到了大规模数据集的处理中。通过学习Spring Boot,我了解了现代化的Java Web开发方式,并通过实践构建了一些简单的Web应用程序。我还意识到在学习过程中遇到的困难和挑战是正常的,通过不断的努力和学习,我能够克服这些困难并取得进步。 在未来,我计划继续深入学习Spark和Spring Boot,扩展我的技术栈,提高自己的技能水平。我希望能够运用所学到的知识解决实际问题,并在项目中发挥作用。此外,我也希望能够不断拓宽自己的技术视野,学习其他相关的技术和框架,以便能够适应不同的项目需求。
在现有省、市港口信息化系统进行有效整合基础上,借鉴新 一代的感知-传输-应用技术体系,实现对码头、船舶、货物、重 大危险源、危险货物装卸过程、航管航运等管理要素的全面感知、 有效传输和按需定制服务,为行政管理人员和相关单位及人员提 供高效的管理辅助,并为公众提供便捷、实时的水运信息服务。 建立信息整合、交换和共享机制,建立健全信息化管理支撑 体系,以及相关标准规范和安全保障体系;按照“绿色循环低碳” 交通的要求,搭建高效、弹性、高可扩展性的基于虚拟技术的信 息基础设施,支撑信息平台低成本运行,实现电子政务建设和服务模式的转变。 实现以感知港口、感知船舶、感知货物为手段,以港航智能 分析、科学决策、高效服务为目的和核心理念,构建“智慧港口”的发展体系。 结合“智慧港口”相关业务工作特点及信息化现状的实际情况,本项目具体建设目标为: 一张图(即GIS 地理信息服务平台) 在建设岸线、港口、港区、码头、泊位等港口主要基础资源图层上,建设GIS 地理信息服务平台,在此基础上依次接入和叠加规划建设、经营、安全、航管等相关业务应用专题数据,并叠 加动态数据,如 AIS/GPS/移动平台数据,逐步建成航运管理处 "一张图"。系统支持扩展框架,方便未来更多应用资源的逐步整合。 现场执法监管系统 基于港口(航管)执法基地建设规划,依托统一的执法区域 管理和数字化监控平台,通过加强对辖区内的监控,结合移动平 台,形成完整的多维路径和信息追踪,真正做到问题能发现、事态能控制、突发问题能解决。 运行监测和辅助决策系统 对区域港口与航运业务日常所需填报及监测的数据经过科 学归纳及分析,采用统一平台,消除重复的填报数据,进行企业 输入和自动录入,并进行系统智能判断,避免填入错误的数据, 输入的数据经过智能组合,自动生成各业务部门所需的数据报 表,包括字段、格式,都可以根据需要进行定制,同时满足扩展 性需要,当有新的业务监测数据表需要产生时,系统将分析新的 需求,将所需字段融合进入日常监测和决策辅助平台的统一平台中,并生成新的所需业务数据监测及决策表。 综合指挥调度系统 建设以港航应急指挥中心为枢纽,以各级管理部门和经营港 口企业为节点,快速调度、信息共享的通信网络,满足应急处置中所需要的信息采集、指挥调度和过程监控等通信保障任务。 设计思路 根据项目的建设目标和“智慧港口”信息化平台的总体框架、 设计思路、建设内容及保障措施,围绕业务协同、信息共享,充 分考虑各航运(港政)管理处内部管理的需求,平台采用“全面 整合、重点补充、突出共享、逐步完善”策略,加强重点区域或 运输通道交通基础设施、运载装备、运行环境的监测监控,完善 运行协调、应急处置通信手段,促进跨区域、跨部门信息共享和业务协同。 以“统筹协调、综合监管”为目标,以提供综合、动态、实 时、准确、实用的安全畅通和应急数据共享为核心,围绕“保畅通、抓安全、促应急"等实际需求来建设智慧港口信息化平台。 系统充分整合和利用航运管理处现有相关信息资源,以地理 信息技术、网络视频技术、互联网技术、移动通信技术、云计算 技术为支撑,结合航运管理处专网与行业数据交换平台,构建航 运管理处与各部门之间智慧、畅通、安全、高效、绿色低碳的智 慧港口信息化平台。 系统充分考虑航运管理处安全法规及安全职责今后的变化 与发展趋势,应用目前主流的、成熟的应用技术,内联外引,优势互补,使系统建设具备良好的开放性、扩展性、可维护性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值