Python实现Instagram爬虫:附完整源代码

136 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Python的instagram-scraper库构建Instagram爬虫,获取特定帖子的元数据。通过设置hashtag列表,程序可以循环遍历并输出最多10个相关帖子的信息,这些信息以JSON格式呈现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现Instagram爬虫:附完整源代码

Python是一种广泛应用于网络爬虫的编程语言之一,通过Python可以轻松地构建自己的爬虫程序。Instagram是一个非常受欢迎的社交媒体平台,这里我们将使用Python实现一个Instagram爬虫,来获取特定帖子的相关信息。接下来我将为你介绍如何使用Python实现Instagram爬虫。

首先,我们需要一个工具来获取Instagram帖子的相关信息。我们可以使用instagram-scraper这个开源工具来完成这项任务。它是一个Python库,可以轻松地从Instagram上获取图片和有关帖子的元数据。

首先我们需要安装instagram-scraper:

pip install instagram-scraper

安装instagram-scraper后,我们可以开始编写我们的Python爬虫程序。下面是整个程序的完整代码:

from instagram_scraper import InstagramScraper

# 设置用于搜索的hashtag
非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值