在加勒比海上,有五个海盗,这些海盗都是十分聪明且贪婪的,他们共同抢到了100枚金币, 每一个人按顺序依次提出自己的分配方案,如果提出的方案没有获得半数或半数以上的人的同意,则这个提出方案的人就被扔到海里喂鲨鱼,那么第一个提出方案的人要怎么做,才能使自己的利益最大化?
这个问题主要使用到了化繁为简的思维方式,在上述题目中,五个人分金币的情况似乎有一些复杂,我们简化一下:
假使前三个人都因为分配金币的方式不合理而被扔下大海,此时还剩下两个人,也就是4号和5号,那么问题就简单了:
4号和5号分金币的情况:
4号提出方案,自己一定会同意的,并且只要自己同意,这个方案就已经获得了半数的支持,就可以被实施
因此,无论5号是否同意4号提出的方案,都不会对最终的结果造成影响,因此,4号一定会要100枚金币,以使自己的利益最大化。
结果就变成了这样:
4号 5号
100 0
现在我们多添加一个人,
3号,4号和5号分金币的情况:
3号要使自己的提议获得半数的支持就必须再拉拢一个人,拉拢4号显然是不合适的,4号一定不会同意,4号知道,只要搞死了3号,
剩下的100枚金币都是自己的,(就像上面4号和5号分金币的情况)拉拢5号是合适的,因为5号之前得不到金币,现在只要3号给5号一个
金币就能够获得5号的支持,因为5号也知道,如果3号死亡,自己一定一枚金币都得不到,
情况就变成了这样:

本文通过化繁为简的方法解析了一个经典的海盗分金币问题。在加勒比海上,五个聪明且贪婪的海盗需要共同决定如何分配100枚金币。为了生存并最大化自身利益,每个海盗依次提出分配方案。本文详细解释了最优分配策略,展示了如何运用递归思维找到解决方案。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



