hdu 5904 LCIS(简单dp)

本文介绍了一种解决最长连续递增子序列(LCIS)问题的方法,并通过两个数组分别读取两组数据,利用动态规划思想计算以每个元素结尾的最长连续递增子序列长度,最终找出两数组共有的最长连续递增子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击打开链接

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int M=1e6+20;
int a[M],b[M];

//consists of consecutive values in increasing order
//递增的值要是连续的 易得递推方程为 dp[a[i]]=max(dp[a[i],dp[a[i]-1]+1)
int d1[M],d2[M];//d[i] 表示为以a[i]结尾的连续valve的lIS 

int ans[M];//以a[i]结尾的LCIS 
int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		for(int i=0;i<M;i++)
		{
			d1[i]=0;
		}
		for(int i=0;i<M;i++)
		{
			d2[i]=0;
		} 
		for(int i=0;i<M;i++)
		{
			ans[i]=0;
		}
		int n,m;
		cin>>n>>m;
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);
			d1[a[i]]=max(d1[a[i]],d1[a[i]-1]+1);
		} 
		for(int i=1;i<=m;i++)
		{
			scanf("%d",&b[i]);
			d2[b[i]]=max(d2[b[i]],d2[b[i]-1]+1);
			
			
		}
		int res=0;//a[i]中没有 b[i]中有的ans[b[i]] lCIS为0 
		for(int i=1;i<=n;i++)
		{
			ans[a[i]]=max(ans[a[i]],min(d1[a[i]],d2[a[i]]));
		 	//两者的LCS由较小的d决定 
			res=max(res,ans[a[i]]); 
		}
		cout<<res<<endl;
		
	}
	return 0; 
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值