引言
在神经生物学实验中,我们经常需要处理大量实验视频。例如在 GCaMP 动态成像实验中,记录的视频数据往往数量庞大,每次手动处理耗时费力,还容易出错。之前我使用 ImageJ 的 Time Series Analyzer V3 插件处理视频,但每次导入视频、粘贴数据、修改参数都需要手动完成,效率非常低。
此外,直接用 ImageJ 或其他工具导出 .tif
文件时,文件体积非常大,占用大量存储空间和处理时间。为了解决这些问题,我决定利用 FFmpeg
将实验视频批量转码成质量稍低但足够清晰的 .avi
格式,并通过 Python 脚本实现文件夹内所有视频的自动化处理。
为了让实验室的同事也能方便使用这个工具,我还利用 PyInstaller 将脚本打包成一个 .exe
文件,这样就不用每次打开终端运行了,直接点击即可完成视频批量处理。
工具准备
1. FFmpeg 下载与安装
FFmpeg 是一个开源的多媒体处理工具,可以高效地转换视频格式、调整帧率、压缩文件
- FFmpeg官网下载
- 下载后将
ffmpeg
添加到系统环境变量,确保可以在命令行中直接调用。
实现过程
1. 批量转码的 Python 脚本
以下是实现批量处理 .mov
和 .mp4
视频的完整 Python 脚本。代码主要功能包括:
- 遍历指定文