主要介绍while_loop,stack,transpose,pad等几个函数。
测试的时候可以开启TensorFlow的eager模式,直接在python命令行下执行代码,得到结果。
开启eager模式的方法:
>>>import tensorflow.contrib.eager as tfe
>>>tfe.enable_eager_execution()
- tf.while_loop(cond, body, var)
函数功能:loop(var 中满足cond的条件,带入body计算),loop结束,返回结果。
例子:
>>> i = tf.constant(0)
>>> c = lambda i: tf.less(i, 10)
>>> b = lambda i: tf.add(i, 1)
>>> r = tf.while_loop(c, b, [i])
- tf.stack([x,y,z], axis=1)
功能:将一个list 转化为一个new_tensor, 原tensor秩为R,new_tensor的秩为R+1
例子:
>>> x = tf.constant([1, 4])
>>> y = tf.constant([2, 5])
>>> z = tf.constant([3, 6])
>>> tf.stack([x, y, z]) # [[1, 4], [2, 5

本文介绍了TensorFlow中的几个关键函数,包括while_loop用于创建循环,stack用于将列表转化为tensor,transpose用于转置tensor,pad则用于对tensor进行填充。在测试时,可以通过开启eager模式直接在Python环境中运行代码。文章通过实例展示了这些函数的使用方法,如tf.while_loop的循环结构,tf.stack的维度提升,tf.maximum和tf.minimum的比较操作,tf.cast的类型转换,tf.concat的拼接以及tf.transpose和tf.pad的矩阵操作。
最低0.47元/天 解锁文章
513

被折叠的 条评论
为什么被折叠?



